
CASE STUDY COMPETITION

Automated Grid Mover System

Welcome to the WSC case study competition. The case study
for this competition is based on the automated grid mover
system and this set of materials aims to help participants get
a better understanding of the system as well as what they are
required to do.

1

Agenda

Preparation
1

Grid Mover System2

Summary3

First, we will cover the preparation material offered to
participants and how they can make full use of the materials;
Second, we will provide a detailed illustration of the grid
mover system and what is expected from participants. This
will then be followed with a summary.

2

01Preparation
◆ Download Tech Document

◆ Download Source Code Package

Let’s start with the first part.

3

PREPARATION

Download Source Code PackageDownload Tech Document

• PDF Reader

• English Version

• Decompress Package

• Python

Chapter 2

Upon registration and sign-in, a tech document and a source
code zip package will be made available to participants.
Please refer to the document for further details regarding the
descriptions on the case description, model structure, and
instructions on file downloading and submission procedures.

After downloading and unzipping source code, you can view

and run the whole system through Pycharm.

4

02Grid Mover System
◆ Overview

◆ Gridmover System Handler

◆ XML Input

◆ Element Creator & Job Generator

◆ Run

◆ Interfaces

Next, we have a detailed illustration of the grid mover
structure.

5

GRID MOVER SYSTEM - OVERVIEW

Park Position Obstacle

Square Unit with High Picking Rate

Square Unit with High Delivery Rate

Real life Warehouse Informal Description：
Transportation Network

First of all, this is an overview of the automated grid mover

system case study.

The picture on the left is a real-life warehouse. On the right,

there is an informal description of this warehouse, which is

called the transportation network. As you can see, the

warehouse is divided into many square units, with different

colours representing different functions. Blue represents

vehicle parking positions, Purple represents obstacles, while

square units with High Picking Rates are Orange and square

units with High Delivery Rates are Red.

Next, let’s explore entities in this grid mover system.

6

Chapter 3.1

Entity Relationship Diagram

GRID MOVER SYSTEM – GRIDMOVER SYSTEM HANDLER

This is a standard entity relationship diagram. We can see the

transportation network which holds a one-to-one relationship with the

grid mover system. This is because 1 grid mover system contains at most

1 transportation network and one transportation network can only

appear in 1 grid mover system. While 1 transportation network is

composed of at least 1 square unit and 1 square unit can only appear

at 1 transportation network, the relationship between them is one-to-

many.

As for vehicle and square unit, their relationship is one-to-many,

because 1 vehicle can reserve more than 1 square units, whereas 1

square unit can only be occupied by 1 vehicle at one time. 1 vehicle

can handle a lot of jobs and 1 job can only appear in 1 vehicle, so the

relationship is one-to-many. Of course, in 1 system there can be many

jobs and vehicles, so system to job and to vehicle are all one-to-many.

For more details, please refer to chapter 3.1 “Entities" of the tech
document.

7

Chapter 3.3

Entity Flow Diagram

GRID MOVER SYSTEM – GRIDMOVER SYSTEM HANDLER

The entity flow chat here describes the main activities of job
and vehicle, as well as the relationship between these
activities. For more details, please refer to chapter 3.3
"Activity-Based Description" of the tech document.

8

GRID MOVER SYSTEM – GRIDMOVER SYSTEM HANDLER

Chapter 3.4

Event Graph

Our grid mover system is a discrete event-based system, and

this is a standard event graph. It is drawn based on the

events in our grid mover system. We can understand the

operation logic of the entire system through the event graph,

take note of the events marked in green.

First, when the job enters the system, the job_arrive event is

triggered, and then this event triggers the attempt_to_deploy

event, which assigns available jobs to suitable vehicles. After

the vehicle and job are matched, the route event will be

triggered. Next, we will show the process of the vehicle

moving on the transportation network in order to provide a

better understanding of the events.

9

EVENT GRAPH ILLUSTRATION

Start Position

Delivery Position

Picking Position

ROUTE

First, the route event will use an algorithm to calculate the

entire path from one place to another. As shown in the

picture, if a vehicle needs to go from its parking position to

the picking position, it must pass a total of 12 square units,

which make up for its travel route.

At this moment the vehicle is parked at the start position.

10

EVENT GRAPH ILLUSTRATION

PARTIAL ROUTE FIRST REQUEST

Start Position

Delivery Position

Reserved Position

Picking Position

The partial_route_first_request event will be triggered once

the vehicle gets its path and it will then try to reserve a partial

route.

For example, for a total of 12 square units, the first 6 square

units are reserved to avoid collision during travelling. When

the vehicle reserves these 6 square units successfully, other

vehicles cannot reserve these grids again, and can only wait

for the requested square units to be released. The

attempt_to_start_partial_route event is only triggered after

the vehicle has successfully reserved its partial route.

11

EVENT GRAPH ILLUSTRATION

ATTEMPT TO START PARTIAL ROUTE → START PARTIAL ROUTE

Start Position

Delivery Position

Reserved Position

Picking Position

The attempt_to_start_partial_route event will verify whether
the reservation was successful. If successful, the
start_partial_route event will be triggered, which allows the
vehicle to start moving.

12

EVENT GRAPH ILLUSTRATION

PARTIAL ROUTE REQUEST: RESERVE NEXT PARTIAL ROUTE

Start Position

Delivery Position

Reserved Position

Picking Position

During the movement of the vehicle, the
partial_route_request event will be triggered to reserve the
next 6 square units that the vehicle will need to pass through
later.

13

EVENT GRAPH ILLUSTRATION

Start Position

Delivery Position

Reserved Position

Picking Position

RELEASE PARTIAL ROUTE → ALLOCATE PARTIAL ROUTE FOR PENDING VEHICLE

When the vehicle reaches the sixth square unit, the
release_partial_route event will be triggered and it will
release the previous start position as well as the 5 square units
that have been passed. The current position of the vehicle at
the sixth square unit will be updated as the new start position.

After releasing these square units, if there are other vehicles
waiting for a square unit, the
allocate_partial_route_for_pending_vehicle event will be
triggered. If the pending vehicle is able to reserve its partial
route from these released square units, then the
attempt_to_start_partial_route event will be triggered and
the pending vehicle will start moving.

14

EVENT GRAPH ILLUSTRATION

COMPLETE PARTIAL ROUTE

Start Position

Delivery Position

Reserved Position

Picking Position

The release_partial_route event will also trigger the
complete_partial_route event, which means that the partial
route has been successfully completed.

15

EVENT GRAPH ILLUSTRATION

ATTEMPT TO START PARTIAL ROUTE → START PARTIAL ROUTE

Start Position

Delivery Position

Reserved Position

Picking Position

After the previous partial route is completed, the
attempt_to_start_partial_route event will be triggered, which
will further trigger the start_partial_route event, which means
the vehicle will start to move again.

16

EVENT GRAPH ILLUSTRATION

RELEASE PARTIAL ROUTE → ALLOCATE PARTIAL ROUTE FOR PENDING VEHICLE

Start Position

Delivery Position

Reserved Position

Picking Position

Once again, when the vehicle moves to the last square unit
of the partial route, it will release its partial route and the
allocate_partial_route_for_pending_vehicle event will be
triggered for any other pending vehicles in the system.

17

EVENT GRAPH ILLUSTRATION

COMPLETE PARTIAL ROUTE → START LOADING → END LOADING

Start Position

Delivery Position

Reserved Position

Picking Position

After the partial route is completed, if the vehicle’s start
position is now the picking position, this means the vehicle has
completed the full route. The start_loading event will then be
triggered. After some time, the end_ loading event will be
scheduled, indicating the completion of loading the job item
onto the vehicle.

18

EVENT GRAPH ILLUSTRATION

ROUTE

Start Position

Delivery Position

Reserved Position

Picking Position

After the job item is loaded onto the vehicle, it needs to
transport the job item to the delivery position. Therefore, the
route event will be triggered to get the next full route
necessary for delivery.

19

EVENT GRAPH ILLUSTRATION

PARTIAL ROUTE FIRST REQUEST

Start Position

Delivery Position

Reserved Position

Picking Position

After a full route is obtained, the partial_route_first_request
event will be triggered to reserve square units accordingly.

20

EVENT GRAPH ILLUSTRATION

ATTEMPT TO START PARTIAL ROUTE → START PARTIAL ROUTE

Start Position

Delivery Position

Reserved Position

Picking Position

If the partial route is reserved successfully, the
attempt_to_start_partial_route event will be triggered and
start_partial_route event will be further triggered. After which,
the vehicle starts to move.

Since the partial route length covers the full route length,
there is no need to reserve the next partial route. The vehicle
will move directly to the delivery position.

21

EVENT GRAPH ILLUSTRATION

RELEASE PARTIAL ROUTE→ ALLOCATE PARTIAL ROUTE FOR PENDING VEHICLE

Start Position

Delivery Position

Reserved Position

Picking Position

When the vehicle has finished the partial route, and the
current occupied square unit is the delivery position, the
release_partial_route event will be triggered. And the
allocate_partial_route_for_pending_vehicle event will be
triggered if there are pending vehicles in system like before.

22

EVENT GRAPH ILLUSTRATION

COMPLETE PARTIAL ROUTE → START UNLOADING → END UNLOADING

Start Position

Delivery Position

Reserved Position

Picking Position

After the partial route is released, the complete_partial_route
event will be triggered. Because the full route is finished, the
complete_partial_route event will trigger the start_unloading
event. After the vehicle has finished unloading, the
end_unloading event will be scheduled. The vehicle has now
finished the job successfully.

23

GRID MOVER SYSTEM – GRIDMOVER SYSTEM HANDLER

Chapter 3.4

Event Graph

The route event will be triggered again if the vehicle has other jobs to do. The

route event will trigger the partial_route_first_request event again to move to

the picking position of the new job. But if the current position of vehicle

happens to be the picking position of the new job, the route event will directly

trigger the start_loading event to load new job items onto the vehicle.

However, if the vehicle has no other jobs to process, it will move to its parking

position. If the current position is not its parking position, the route event must

trigger partial_route _first_request event, and all other previously mentioned

events will be triggered sequentially until the start_parking event is triggered. If

the start position is exactly in its parking position, the route event can directly

trigger the start_parking event. When the vehicle reaches its parking position,

the start_parking event will trigger the attempt_to_deploy event to match

new jobs coming into the system.

Detailed description of all events displayed on the event graph is provided in

Chapter 3.4 of the tech document.

24

GRID MOVER SYSTEM – GRIDMOVER SYSTEM HANDLER

All these events are written into gridmover_system_handler.py
file. The grid mover system handler manages events by using
O2DES.PY structure, and each event has comment.

25

GRID MOVER SYSTEM – XML INPUT

Park Position Obstacle

Square Unit with High Picking Rate

Square Unit with High Delivery Rate

(0,0) (1,0)

(0,1)

(2,0) (3,0)

(1,2) (2,2)

(4,3)

Transportation Network

(0,3)

(0,2)

Now that we know how the system works, we should consider

what input our system needs. As seen before, we will now

give each square unit a unique index in the transportation

network of our simulation system.

The square unit on the first row and first column is given (0,0),

the square unit on the first row and second column is (1,0),

and so on. We can also see that the parking positions are at

(2,0) and (3,0) respectively, while the two obstacles are at

(1,2) and (2,2) respectively. The square unit with the high

picking rate is at (0,3), while the square unit with high delivery

rate is at (4,3).

26

GRID MOVER SYSTEM – XML INPUT

<SimulatedJobs>
<Lambda>40</Lambda>
<PickingDefaultRate>1</PickingDefaultRate>
<DeliveryDefaultRate>1</DeliveryDefaultRate>
<SquareUnits>

<SquareUnit>
<SquareUnitIndex>(0,3)</SquareUnitIndex>
<PickingRate>2.5</PickingRate>
<DeliveryRate>0.5</DeliveryRate>

</SquareUnit>
<SquareUnit>

<SquareUnitIndex>(4,3)</SquareUnitIndex>
<DeliveryRate>2.5</DeliveryRate>

</SquareUnit>
</SquareUnits>

</SimulatedJobs>

</GridMoverSystem>

<GridMoverSystem>

<TransportationNetwork>
<StartPoint>(0,0)</StartPoint>
<Dimension>(5,5)</Dimension>
<Obstacles>

<Obstacle>(1,2)</Obstacle>
<Obstacle>(2,2)</Obstacle>

</Obstacles>
</TransportationNetwork>

<GridMoverResources>
<Vehicle Id="Vehicle1">

<ParkPosition>(2,0)</ParkPosition>
</Vehicle>
<Vehicle Id="Vehicle2">

<ParkPosition>(3,0)</ParkPosition>
</Vehicle>

</GridMoverResources>
Chapter 3.5

We will now enter all the information in XML, which is our XML input file.

We can see that the transportation start point is (0,0) and that the dimensions

is a 5*5 grid. We can also see the square unit index for the obstacles as well as

the two vehicles’ parking positions. With all the inputs on transportation, Jobs

are then automatically generated next. We use exponential distribution to

generate jobs and this lambda means approximately how many jobs are

generated within 1 hour. Since we know different square units have different

picking and delivery rates, we assume all default rates are 1 and other square

units with special picking or delivery rates are listed below. Since the picking

rate of (0,3) is higher than 1, this means that this square unit has a High Picking

Rate.

Further explanations on input is provided in Chapter 3.5 of the tech document.

27

GRID MOVER SYSTEM – ELEMENT CREATOR & JOB
GENERATOR

Job Generator

• Initial entities from xml input: square
unit, transportation network, vehicle

• Initial job generator handler and
gridmover system handler

• Use exponential distribution lambda
to calculate job arrival rate

• Use Alias to distribute picking and
delivery position

Element Creator

In order to read XML input file in the system, we need an

element creator file and a job generator file. The element

creator file has two main tasks. One, it initializes entities from a

XML input file (e.g. square unit, transportation network and

vehicle). Second, it initializes handlers (e.g. job generator

handler and grid mover system handler).

Now let’s take a look at the job generator. Exponential

distribution is applied to obtain the job arrival rate. The

Lambda for this exponential distribution is included in the XML

file. The job generator adopts Alias to randomize the job’s

picking and delivery position based on possibilities from the

XML file.

28

GRID MOVER SYSTEM – ELEMENT CREATOR

Looking at these two files in source code, the element
creator is in the xml_parser folder, and through the create
function, we can see that the job generator handler and grid
mover system handler are initialized.

29

GRID MOVER SYSTEM – JOB GENERATOR

The job generator handler is in the job generator folder,
which manages the job generator file. We can see that the
job generator generates jobs based on exponential
distribution and Alias.

30

GRID MOVER SYSTEM – RUN: RUN_FILE.PY

Now that we know more about the input and how to use it,

the next step is to run the system. There are two running files in

the run folder: run file and run file with animation.

Let’s look at the run file first. Run file has the xml_file_name we
wish to run.

31

GRID MOVER SYSTEM – RUN: XML INPUT FILE

For now, the input file is scenario_1. When the competition

progresses to Round 2 and 3 where will provide scenario_2

and scenario_3 respectively, you can put all these scenario

files in the input folder and change the name accordingly in

run_file.py and run_file_with_animation.py which will be

shown later. The system will run the file you need.

32

GRID MOVER SYSTEM – RUN: RUN_FILE.PY

The random seed is at 0. When we test your code, we will use

multiple random seeds to achieve the average performance.

When you click the run button, the project will run successfully.

33

GRID MOVER SYSTEM – RUN : STATISTICS RESULTS

Chapter 3.7

{
"Total Number of Job Generated": 6,
"Finished Job": {

"Quantity": 6,
"Effective Duration With Load [s]": 53,
"Effective Ratio": 0.2641,
"Average Job Cycle Time [s]": 33.4498

},
"Unfinished Job": {

"Quantity": 0,
"Penalty Time Per Job [s]": 900

},
"Delay Due To Waiting for Pick Up (Job) [s]": 105.7,
"Delay Due To Traffic Congestion (Loaded Vehicle) [s]": 0,
"Delay Due To Traffic Congestion (Empty Vehicle) [s]": 0,
"Duration Without Load [s]": 89.0,
"Adjusted Average Job Cycle Time [s]": 33.4498

}

Now, after running successfully, we can see a JSON output file from the

output folder. Each time you run the system, the JSON file will be

updated. We will grade the system based on the output indexes.

Let’s look at the output in detail. It lists the total number of generated,

finished and unfinished jobs. Each unfinished job will be allocated a

penalty time of 4 times the duration used for 1 vehicle to travel the

whole transportation network. Our main criterion of judgment is the

adjusted average job cycle time, which shows the average time used

by one job from arriving to being delivered in the system. Other outputs

such as delay due to waiting for pick up and duration without load are

given to participants as a reference to improve and refine their system.

Participants can check each statistic result explanation in Chapter 3.7

of the tech document.

34

GRID MOVER SYSTEM – RUN: ANIMATION

In order to show the system running, we have provided the
run file with animation. When running the project, a 2D
animation will be shown.

35

GRID MOVER SYSTEM – RUN: ANIMATION

2D Animation

The light gray area is our transportation network area, now
set at 15*15. The column number and row number are
indicated on the sides. There is a legend provided below the
grid indicating what each colour block represents. The right-
hand side box indicates simulation seed applied, time and
vehicle travel information.

36

GRID MOVER SYSTEM – RUN: ANIMATION

2D Animation

We can see the vehicle move out from its parking position.
The green square units are its job route. The vehicle will move
to the picking position to load the job item and then travel to
the red delivery position to unload. Once the job is
completed, if there are no new jobs, the vehicle will travel to

its parking position. Otherwise, it will travel to its next location
to pick up the next job.

37

GRID MOVER SYSTEM – RUN: ANIMATION

Animation with Deadlock

On the left image, the orange square units that represent the
end positions will show up before vehicles start to move. This
means that deadlock has happened, and vehicles cannot
continue travelling. When the run is over, it will look like the
image on the right, where some jobs are unfinished.

38

GRID MOVER SYSTEM – INTERFACES

Deployment Request

Route

Match available jobs and vehicles

Param: available job dataframe,

vehicle dataframe

Return: vehicle to jobs dictionary

Generate route for the vehicle

Param: transportation network, vehicle,

start and end position

Return: path (list of square unit index)

Request partial route for the vehicle

Param: vehicle, vehicle dataframe, grid

dataframe

Return: partial route (list of square unit index)

Chapter 3.6

Last but not least, what else can be modified in this system? The answer is, three interfaces

can be modified: deployment, route, request. These three interfaces are connected to the

events in green mentioned earlier.

The Deployment interface matches available jobs and vehicles. We will give this interface

an available job dataframe which contains information on jobs as well as a vehicle

dataframe with information on vehicles, and the Deployment interface needs to return a

dictionary containing vehicles and jobs. The Route interface generates routes for vehicles.

The parameters of this interface are the transportation network, the vehicle that requires

the route as well as the start and end position of the route. The Route interface needs to

return a full path for the vehicle, which is a list of square unit index. The Request interface

requests partial routes for vehicles, and this interface provides the following: vehicle asking

for partial route, vehicle dataframe, grid dataframe which contains info of transportation

network. The Request interface needs to return a partial route, which is a list of square unit

index. For more details, please refer to chapter 3.6 “Interface” of the tech document.

There are also three important dataframes here, available_job_df, vehicle_df and grid_df.

Please see chapter 3.2 of the tech document for more details.

39

GRID MOVER SYSTEM – INTERFACES

Now, let’s see these three interfaces in source code. All

interfaces are in the interface folder. Using Deployment as an

example, all required parameters are given to deployment.

40

GRID MOVER SYSTEM – INTERFACES

There are two important methods, namely

default_algo_to_deploy and user_algo.

default_algo_to_deploy is the algorithm the system uses

currently, while user_algo is currently empty and only has

comments of description of return.

Participants need to write their own algorithm under

user_algo, and the system will run their algorithms

automatically.

41

GRID MOVER SYSTEM – INTERFACES

This is very easy to do even if you don’t have simulation
knowledge. You can use the default algorithm but only
change the vehicle_maximum_capacity value or
job_maximum_distance value in line 10 and 11, this is also
accepted since the system will have a different performance.
But of course, more improvements will achieve higher scores.

42

03Summary
◆ Structure of Simulation System

Finally, let’s summarise the simulation system.

43

SUMMARY

Grid Mover System Structure Folder Name Files Contained

animation files for animation

config_pack file_config.py

handler gridmover_system_handler.py

input scenario_1.xml

interface deployment.py; route.py; request.py

job_generator jobs_generator_handler.py;

jobs_distribution_generator; etc.

load job.py

output statistics_output_creator.py; statistics_output.json

run run_file.py; run_file_with_animation.py

standard files from O2DESpy

transportation transportation_network.py; square_unit.py; vehicle.py

xml_parser element_creator.py; xml_parser.py

The animation folder only contains files for animation, participants are

not required to understand them. This also applies to the config_pack.

The handler folder contains the gridmover system handler which

manages all grid mover events. The input folder contains XML input files.

The interface folder has three interfaces that are the only components

that participants can change in the system.

The job generator folder contains files for generating jobs. The load

folder contains job class. You may ignore the log folder.

The output folder contains JSON output files, the run folder has two

running files: run file and run file with animation, the standard folder

contains files from O2DES.PY, the transportation folder has

transportation, square unit and vehicle class files.

Last but not least, the final xml parser folder contains the element
creator file.

44

THANK YOU

Thank you for participating in the 2022 WSC case study
competition. Good luck!

45

