
WSC Case Competition

Tech Document

2022

i

SUMMARY

In line with the spirit of “Reimagine Tomorrow”, the theme for this year’s Winter Simulation Conference

(WSC), we are thrilled to introduce our Case Study Competition which will examine the role of simulation

in next-generation industrial systems as well as plant the seeds of collaboration between academia and

industry.

Titled “Smart Simulation for Intelligence Incubation”, the competition aims at demonstrating and

promoting simulation’s ability to cooperate with optimization rules and data learning in order to improve

the overall performance of intelligent systems. It will provide participants with an opportunity to explore

and exploit the use of simulation tools in supporting real-time decision analysis under different scenarios.

Using the automated grid mover system as the case study for this competition, we have built a basic

simulation system model with discrete-event modelling methods and implemented it in O2DESpy, which

is a framework for object-oriented discrete event simulation based on standard Python 3.x. Participants are

expected to embed their own algorithms in certain parts of the model, using their skills in model training

and large-scale search, to improve the grid mover system performance. The teams that generate the best

overall performance stand the best chance to win.

The purpose of this document is to provide participants with detailed descriptions on the model structure,

and to guide them on the process of file downloading and submission procedures.

https://github.com/huawei-noah/noah-research/tree/master/o2despy

ii

CONTENTS

SUMMARY .. i

CONTENTS... ii

LIST OF FIGURES ... iv

LIST OF TABLES .. v

Chapter 1 Overview ... 1

1.1 Problem Description ... 1

1.2 Competition Rules .. 3

1.3 General Evaluation Guide ... 5

Chapter 2 User Instructions .. 6

2.1 Install Python .. 6

2.2 Install PyCharm .. 8

2.3 Download Source Code .. 11

2.4 Add Python Interpreter.. 11

2.5 Add Python Packages Installation ... 16

Chapter 3 Data in the Discrete-Event Simulation Model ... 19

3.1 Entities .. 19

3.2 DataFrame ... 23

3.2.1 vehicle_df .. 23

3.2.2 grid_df ... 24

3.2.3 available_job_df .. 24

3.3 Activity-Based Description ... 25

3.4 Event ... 28

3.4.1 job_arrive() ... 29

3.4.2 attempt_to_deploy() .. 29

3.4.3 route() .. 32

3.4.4 partial_route_first_request().. 34

3.4.5 attempt_to_start_partial_route() .. 36

3.4.6 start_partial_route() ... 37

3.4.7 partial_route_request() .. 38

3.4.8 release_partial_route() .. 39

3.4.9 allocate_partial_route_for_pending_vehicle() .. 41

3.4.10 complete_partial_route() ... 43

iii

3.4.11 start_loading() ... 45

3.4.12 end_loading() .. 46

3.4.13 start_unloading() ... 47

3.4.14 end_unloading() .. 48

3.4.15 start_parking() ... 49

3.5 Input .. 50

3.6 Interface .. 52

3.6.1 Deployment ... 53

3.6.2 Route ... 55

3.6.3 Request .. 56

3.7 Output ... 57

Chapter 4 Evaluation ... 59

4.1 File Submission Format .. 59

4.2 File Submission Process.. 59

4.3 Evaluation Criteria .. 60

iv

LIST OF FIGURES

Figure 1 - Traditional Warehouse .. 1
Figure 2 - Various Warehouse Layout and Traffic Designs .. 2
Figure 3 - Grid-based Traffic Environment ... 3
Figure 4 - Competition Format .. 4
Figure 5 - An Illustration of Entities .. 19
Figure 6 - Entity Relationship Diagram (ERD) ... 20
Figure 7 - Entity Flow Diagram (Activity-Based) ... 25
Figure 8 - An Illustration on Traveling Process... 27
Figure 9 - Event Graph for the Model ... 28
Figure 10 - EG for job_arrive() ... 29
Figure 11 - Flow Chart for job_arrive() ... 29
Figure 12 - EG for attempt_to_deply() .. 29
Figure 13 – Flow Chart for attempt_to_deploy() ... 31
Figure 14 - EG for route() .. 32
Figure 15 - Flow Chart for route() ... 33
Figure 16 - EG for partial_route_first_request() .. 34
Figure 17 - Flow Chart for partial_route_first_request() ... 35
Figure 18 - EG for attempt_to_start_partial_route() .. 36
Figure 19 - Flow Chart for attempt_to_start_partial_route() ... 36
Figure 20 - EG for start_partial_route() ... 37
Figure 21 - Flow Chart for start_partial_route() .. 37
Figure 22 - EG for partial_route_request() .. 38
Figure 23 - Flow Chart for partial_route_request() ... 39
Figure 24 - EG for release_partial_route() .. 39
Figure 25 - Flow Chart for release_partial_route() .. 40
Figure 26 - EG for allocate_partial_route_for_pending_vehicle() .. 41
Figure 27 - Flow Chart for allocate_partial_route_for_pending_vehicle() .. 42
Figure 28 - EG for complete_partial_route() ... 43
Figure 29 - Flow Chart for complete_partial_route() .. 44
Figure 30 - EG for start_loading() ... 45
Figure 31 - Flow Chart for start_loading() .. 45
Figure 32 - EG for end_loading() .. 46
Figure 33 - Flow Chart for end_loading() ... 46
Figure 34 - EG for start_unloading() ... 47
Figure 35 - Flow Chart for start_unloading() .. 47
Figure 36 - EG for end_unloading() .. 48
Figure 37 - Flow Chart for end_unloading().. 48
Figure 38 - EG for start_parking() ... 49
Figure 39 - Flow Chart for start_parking() .. 49
Figure 40 - Model Input Data in ERD ... 50
Figure 41 - An Example of the Location of user_algo() in the Deployment Interface .. 52
Figure 42 - The Relationship Between the Grid Mover System Handler and the Interface Modules.......................... 52
Figure 43 - Input Data and Return data for Deployment Interface Module ... 53
Figure 44 - Deployment Default Algorithm .. 54
Figure 45 - Input data and Return Data for Route Interface Module ... 55
Figure 46 - Input data and Return Data for Request Interface Module .. 56
Figure 47 - An Illustration on Model Output ... 57

https://nusu-my.sharepoint.com/personal/e0322919_u_nus_edu/Documents/WSC%20Doc%20Final%20Doc.docx#_Toc110115175
https://nusu-my.sharepoint.com/personal/e0322919_u_nus_edu/Documents/WSC%20Doc%20Final%20Doc.docx#_Toc110115176

v

LIST OF TABLES

Table 1 - Attributes of Square Unit ... 21
Table 2 - Attributes of Transportation Network .. 21
Table 3 - Attributes of Job ... 22
Table 4 - Attributes of Vehicle .. 22
Table 5 - Illustration of vehicle_df .. 23
Table 6 - Illustration of grid_df ... 24
Table 7 - Illustration of available_job_df .. 24
Table 8 - Model Input Data not in ERD .. 51
Table 9 - Input and Output Variables for Deployment Interface ... 53
Table 10 - Input and Output Variables for Route Interface ... 55
Table 11 - Input and Output Variables for Request Interface ... 56
Table 12 - Model Output Data ... 57

1

Chapter 1

Overview

1.1 Problem Description

Welcome to the challenge. In this journey you are expected to make use of your simulation skills, in

cooperation with optimization and data learning techniques to improve the performance of a fully

automated grid mover system in a warehouse.

Figure 1 - Traditional Warehouse

A warehouse, as shown in Figure 1, stores products for stocking, packing, and shipping preparations. It is

a central location that manages both inbound and outbound SKUs. Traditional operations of a warehouse

depend heavily on human labor, such as picker, packer and forklift driver. However, with the force of

globalization and the growing demand in e-commerce, warehouses must scale up their operations to

facilitate the surging logistics demand in order to make the operations more intelligent, accurate and

efficient. Therefore, warehouse digitalization would be the major trend in the next decades. Some of the

promising warehouse digitalization technologies include real-time data gathering and interconnectivity,

Autonomous Guided Vehicles (AGV), smart analytics and machine learning.

Our warehouse, “Avatar”, recently opened its doors to such disruptive technologies, which involves AGVs

as the main transport to facilitate the movement of SKUs in between shelves and different work stations, to

meet its ever-rising throughput demand and free up human labors. The AGVs are deployed automatically

with real-time data and are capable of self-navigation. However, great challenges arise in ensuring traffic

2

efficiencies due to the large volume of SKUs and limited AGV and warehouse space resources, as well as

the potential for traffic congestion.

To solve this problem, the research team has decided to build a simulation model to test on different AGV

intelligent deployment, route planning and collision management algorithms. However, the AGV traffic

networks in real warehouses are complex, containing intersecting lanes, road obstacles, pick-up and drop

off points, and their designs could vary depending on the warehouse layout and equipment resources (shown

in Figure 2).

Figure 2 - Various Warehouse Layout and Traffic Designs

To build a model that can represent a generic and robust estimation of AGV traffic network, a grid-based

environment is adopted. As shown in Figure 3, grids are used to represent the vehicle traffic network with

traversable square units. This mosaic structure allows different traffic layouts to be modeled by blocking

certain square units. Building upon this traffic environment, other operations such as job generation, job

deployment, vehicle route planning and movement, loading and unloading processes are incorporated into

the model, forming the “Grid Mover System”. The simulation model is implemented in python using

discrete-event methodologies.

3

Figure 3 - Grid-based Traffic Environment

First of all, your task in this challenge is to help “Avatar” devise a new vehicle deployment algorithm, route

planning algorithm and collision avoidance algorithm (route reservation algorithm). This is then followed

by rewriting and replacing the existing decision rules in the given model. Last but not least, you are to use

your knowledge in model training and large-scale search to maximize the performance of the Grid Mover

System under different simulation scenarios.

Good luck helping Avatar break its new through-put record:)

1.2 Competition Rules

As shown in Figure 4, the given model contains data and source code according to the following three

aspects of information:

(A) Input: Example simulation scenarios with specific parameters.

(B) Interface: The three decision modules where users can modify the code for their own decision

algorithms for vehicle deployment, route planning and collision management through partial route

reservation request. The respective names for the modules are “Deployment”, “Routing” and “Request”.

The default algorithms will be provided too.

(C) Output: Performance indicators to measure the efficiency and quality of the Grid Mover System

Part (A) (B) (C) will be further elaborated in the “Data” section 3.5, 3.6 and 3.7 respectively. Apart from

these three aspects, the discrete-event simulation model will also be provided for user’s reference.

4

Figure 4 - Competition Format

You are expected to rewrite and replace the existing decision modules (B) with Python language, to

maximize the performance (C) of the Grid Mover System under different scenarios (A) through model

training and large-scale search.

You can generate the logic rules in Part (B) in various ways, including but not limited to:

a. Writing rule-based scripts or heuristic algorithms embedded in decision events

b. Embedding simulation model into external optimization search algorithm

c. Using the machine learning model to identify and conclude the best rule parameters and embed

them in decision events

You only need to provide part (B) of the program code and required data, and there is no need to submit

optimization and training program.

Note: all other source code besides those for Part (B) will not be evaluated or runed.

5

1.3 General Evaluation Guide

Your data and program code will be embedded in the discrete-event simulation model provided in advance,

overwrite the corresponding original code, and compile and generate an executable simulation program.

Your program will run under a variety of scenarios and random seeds. The winner will be the one whose

model generates top average performance index for each case.

For further instructions regarding file downloads, submissions please see Chapter 2 and Chapter 4. For

elaborations on model structures and available data, please see Chapter 3. For detailed evaluation criteria,

please see Chapter 4.

6

Chapter 2

User Instruction

2.1 Install Python

1) Go to website https://www.python.org/downloads/ and click Download button to download the

python executable installer

2) Double click the downloaded .exe file and start the installation process

3) Tick both the Install launcher for all users and Add Python 3.10 to PATH checkboxes

https://www.python.org/downloads/

7

4) Click Install Now

5) Wait for a while to complete the installation process and after successful setup, close the

dialogue box

8

2.2 Install PyCharm

1) Go to the website https://www.jetbrains.com/pycharm/download/ and click

the DOWNLOAD button under the Community Section.

2) Double click the downloaded .exe file to start the installation process and click Next

https://www.jetbrains.com/pycharm/download/

9

3) Modify the installation location if needed and click Next

4) Choose 64-bit launcher and click Next

10

5) Modify the default start menu folder if needed and click Install

6) Wait for the installation process to finish and click Finish

11

2.3 Download Source Code

1) After registration and joining in a team, please go to the website

https://competition.huaweicloud.com/information/1000041743/introduction and download zip

package of source code: “WSC Case Competition.zip”

2) Decompose zip package to folder “WSC Case Competition”

3）Source code structure of ‘WSC Case Competition’

Input folder: includes scenario files (XML files)

Output folder: includes output file (JSON file)

Run folder: includes run files (Python files)

2.4 Add Python Interpreter

1) Open PyCharm, confirm user agreement and click Continue

https://competition.huaweicloud.com/information/1000041743/introduction

12

2) Click either option of your choice

3) Click Open, and open “WSC Case Competition” folder directly

13

4) Click File and click Settings

14

5) Open Project tab and click Python Interpreter, and click Add Interpreter

6) Choose Virtualenv Environment, click OK

15

7) Click OK

16

2.5 Add Python Packages Installation

1) Click File and click Settings

2) Open Project tab and click Python Interpreter

17

3) Click + button

4) Search for the packages to be installed

18

5) Click Install Package button to start the installation process

6) For this competition, repeat step 4 - step 5 to install ‘numpy’, ’pandas’, ‘sortedcontainers’

and ’pygame’ correspondingly

7) Click OK to finish all packages installation

19

Chapter 3

Data in the Discrete-Event Simulation Model

3.1 Entities

There are five entities involved in this model, Square Unit, Transportation Network, Job, Vehicle and Grid

Mover System. Each is represented by a class and has its own set of attributes. As shown in Figure 1, the

grid map, which is formed by a network of lines, is the Transportation Network. The individual square in

the grid is the Square Unit, which represents specific positions in the Transportation Network. A Job is a

task to move a Job item in the warehouse from the picking position to the delivery position. A Job item is

generated at its picking position and eventually moved to delivery position by a Vehicle. Vehicles move

along the adjacent Square Units vertically or horizontally to pick or deliver Job items or park themselves at

the park positions if no Job is assigned to them. The system which manages all the above entities is called

Grid Mover System. An Entity Relationship Diagram (ERD) is shown in Figure 2 to give an overview of

the relationships among the entities and the attributes associated with them.

Figure 5 - An Illustration of Entities

20

Figure 6 - Entity Relationship Diagram (ERD)

The details about the entity attributes and their definitions are explained below.

Table 1 lists the attributes of Square Units. One thing to note is that some of the Square Units can be

obstacles and do not allow Vehicles to pass through. Such obstacles will be specified in the model input

(see section 3.5 for model input).

21

Table 1 - Attributes of Square Unit

Attribute Name Type Description

row_index int The row number of the Square Unit in the Transportation Network,

starting from 0.

column_index int The column number of the Square Unit in the Transportation Network,

starting from 0

square_unit_index Tuple<int, int> The primary key of a Square Unit.

The row and column number of the Square Unit in the Transportation

Network. The first value is row_index, and the second value is

column_index, starting from (0,0).

is_obstacle bool Indicating if the Square Unit is an obstacle. If true, the Square Unit

cannot be requested or reserved, i.e. no Vehicle can pass through this

Square Unit.

vehicle_via int The total number of Vehicles that have passed through this Square Unit

in the current simulation run.

occupied_vehicle Vehicle The Vehicle that successfully requests or parks at this Square Unit.

Table 2 summarizes the attributes of Transportation Network which are all static attributes and will be

specified in the model input too.

Table 2 - Attributes of Transportation Network

Attribute Name Type Description

id str The primary key of Transportation Network in the form of

“TransportationNetwork#” + index

start_point Tuple<int, int> The start point of the Transportation Network.

The first value is row_index, the second value is column_index.

dimension Tuple<int, int> The dimension of the Transportation Network. The first value is the

number of rows, the second value is the number of columns.

obstacle_list List<Tuple<int,

int>>

The list of square_unit_index whose respective Square Unit does not

allow Vehicles to pass through.

Table 3 gives information on the attributes of Jobs, which are all static attributes. Jobs arrive at the

system following an exponential distribution, and they specify the picking positions and delivery

positions of the Job items.

22

Table 3 - Attributes of Job

Attribute Name Type Description

id str The primary key of a Job instance in the form of “Job#” + index

delivery_position Tuple<int, int> The square_unit_index of the Square Unit where a Vehicle delivers

the Job item.

picking_position Tuple<int, int> The square_unit_index of the Square Unit where a Vehicle picks the

Job item.

arrival_time datetime The time when the Job arrives at the Grid Mover System.

Table 4 summarizes the attributes of Vehicles.

Table 4 - Attributes of Vehicle

Attribute Name Type Description

id str The primary key of a Vehicle instance in the form of

“Vehicle#” + index

pace float The time in seconds that the Vehicle requires to pass one

Square Unit distance.

The Unit is [seconds per Square Unit]

static_route List<Tuple<int,

int>>

The list of square_unit_index of the Square Units in the

full route of the Vehicle from one point to another.

park_position Tuple<int, int> The square_unit_index of the Square Unit where the

Vehicle parks.

start_position Tuple<int, int> The square_unit_index of the Square Unit that the Vehicle

occupies before traveling through the partial route.

dynamic_route List<Tuple<int,

int>>

The list of square_unit_index of the Square Units in

the static_route that the Vehicle has yet to reserve and

travel.

reservation List<Tuple<int,

int>>

List of square_unit_index of the Square Units that the

Vehicle requests successfully and has not started to pass

through.

reservation_pending List<Tuple<int,

int>>

List of square_unit_index of the Square Units that the

Vehicle cannot reserve successfully because they are

reserved or occupied by other Vehicles

request_time datetime The time at which the Vehicle requests its partial route but

did not succeed.

23

Partial_route_complete_time datetime The time at which the Vehicle completes its current partial

route.

reservation_to_release List<Tuple<int,

int>>

List of square_unit_index of the Square Units that the

Vehicle reserves successfully and already starts to pass

through.

job_list List<Job> The list of Job objects assigned to the Vehicle.

status str A Vehicle has four statuses: idle, pick, deliver, park

pick: When the Vehicle is traveling to the Job’s picking

position

deliver: When the Vehicle is traveling to the Job’s delivery

position

park: When the Vehicle is traveling to the park position.

idle: When the Vehicle parks at the park position or just

finish a job.

3.2 DataFrame

An entity’s dynamic attributes are stored in DataFrames. There are three DataFrames in the model:

vehicle_df, grid_df and available_job_df.

3.2.1 vehicle_df

vehicle_df contains dynamic attributes of each Vehicle instance, matched by its `VehicleId`. Table 5

illustrates an example of the data entries in vehicle_df in a scenario with 6 Vehicles. The columns are

`VehicleId` and the names of the dynamic attributes, and each row value is associated with one Vehicle

instance. To see definitions on each column, please see section 3.1 on entity attribute definitions.

Table 5 - Illustration of vehicle_df

Vehicle VehicleId
Start

Position
DynamicRoute Reservation

Reservation
Pending

Request
Time

PartialRoute
CompleteTime

ReservationTo
Release

JobList Status

Vehicle Vehicle1 (1,1)
[(1,2), (1,3),
(1,4) ...]

[(1,2), (1,3),
(1,4)]

NaN NaN NaN NaN
[Job1,
Job2]

Pick

Vehicle Vehicle2 (3,1)
[(3,2), (3,3),
(3,4), (2,4), (2,5),
(1,5) ...]

NaN
[(2,4), (2,5),
(1,5)]

2022-06-
06
10:47:21

2022-06-06
10:44:2

[(3,2), (3,3),
(3,4)]

[Job4] Deliver

Vehicle Vehicle3 (2,2)
[(2,3), (2,4),
(2,5)]

NaN NaN NaN
2022-06-06
10:57:2

[(2,3), (2,4),
(2,5)]

NaN Park

Vehicle Vehicle4 (1,1) NaN NaN NaN NaN NaN NaN NaN Idle

Vehicle Vehicle5 (6,9) NaN NaN NaN NaN NaN NaN [Job5] Idle

Vehicle Vehicle6 (7,9) NaN NaN NaN NaN NaN NaN NaN Idle

24

3.2.2 grid_df

Similarly, grid_df contains dynamic attributes of each Square Unit instance, matched by its

`SquareUnitIndex`. Table 6 illustrates an example of the data entries in grid_df. The columns are

`SquareUnitIndex` and the names of the dynamic attributes, and each row value is associated with one

Square Unit instance.

Table 6 - Illustration of grid_df

SquareUnitIndex IsObstacle VehicleVia OccupiedVehicle

(0,0) FALSE 3 Vehicle4

(0,1) TRUE 0 NaN

(0,2) FALSE 1 NaN

… … … …

3.2.3 available_job_df

However, available_job_df is not a DataFrame for dynamic properties. Rather, it is a real time collection

on Job instances together with their relevant attributes, including ̀ JobId` and ̀ ArrivalTime`, for the purpose

of job-vehicle deployment. These Jobs not only include those that have arrived at the system and never

been assigned to Vehicles, but also those that have already been assigned to Vehicles, but the Vehicles have

not started their ways to pick the Jobs. This is to allow the latter type of Jobs to be reassigned to other

Vehicles which may be of better choices at a different point in time. The Deployment decision interface

module would be explained later in section 3.6.1. Table 7 illustrates an example of the data entries in

available_job_df. The columns are `JobId` and `ArrivalTime`, and each row value is associated with one

Job instance.

Table 7 - Illustration of available_job_df

Job JobId ArrivalTime

Job Job#1 23/05/2022 10:47:21

Job Job#2 23/05/2022 10:57:22

25

3.3 Activity-Based Description

Figure 7 - Entity Flow Diagram (Activity-Based)

This section aims to provide an overview of the system storyline by describing the activities of different

entities. Each box is an activity associated with an entity, and each has an active or passive time delay.

Nonetheless, the simulation model is event-based, and Figure 7 only serves as illustration support. Please

see section 3.4 for the full event graph.

As illustrated in Figure 7, in the simulation, a Job arrives at the system at its picking position and first waits

for a Vehicle. After the assigned Vehicle reaches the Job’s picking position, the Job item will start loading

on the Vehicle and subsequently is transported to its delivery position where the Job item will be unloaded

from the Vehicle. From here, the Job is finished.

A typical Vehicle initially stays at its park position when the simulation starts until it is matched with a Job,

then it travels to the Job’s picking position to pick the Job item. After successfully loading, it travels to the

Job’s delivery position to deliver the Job item. After successfully unloading, if the Vehicle has another Job

to do, it will travel to pick up the next Job item; If the Vehicle has no more Jobs to do, the Vehicle will

travel back to the park position waiting for new Job tasks.

The traveling process is similar for a Vehicle to pick or deliver Job items or to park itself, as shown in

Figure 8. It first obtains its full route from its current position (start position) to the destination position

(end position), such as from its park position to the Job’s picking position during a picking task. Next, it

requests its first partial route, i.e., a section of the full route adjacent to the start position. If the Square Units

26

in the partial route are all unoccupied, the Vehicle will reserve the partial route successfully. However, if

the Vehicle fails to reserve the partial route, i.e., the Square Units in the partial route may be occupied by

other Vehicles at the time of requesting, the Vehicle will wait for the partial route to be released at its

current position. After the Vehicle reserves the partial route successfully, it starts to travel through the

current partial route. Meanwhile, at any moment during its travel, the Vehicle can request its next partial

route, i.e., a section of the full route that is adjacent to the current partial route. Eventually, the current

partial route is completed and released when the Vehicle reaches its end Square Unit. This process of

requesting, waiting for and traveling through the partial route will repeat until the full route is completed,

then it starts to load, unload or park based on different conditions.

To be noted, once deadlock happens, vehilces will stop travelling, leading to failure in finishing jobs.

27

Figure 8 - An Illustration on Traveling Process

28

3.4 Event

This simulation uses 15 events to describe the above process. As shown in the event graph (EG) in Figure

9. Each event is scheduled with or without a parameter, whose primary key index is shown in the bracket

beside the event name. The primary key index can be found in the entity tables in section 3.1. Take “Job

Arrive(k)” as an example, job_arrive() event is scheduled with a parameter k, a Job object. Similarly,

route() event is scheduled with a parameter j, a Vehicle object. The arrow “ ” indicates the triggering

relationship in between events, i.e. an event is scheduled by another event. “ cx ~ ” indicates the condition

required to schedule the next event. For example, attempt_to_deploy() event schedules route() event

under condition c1 and passes in parameter j. What’s more, “|| ” represents a time delay in scheduling the

next event. For example, start_partial_route() event starts at time t, and it schedules

partial_route_request() event at time t + t1. In addition, in each event, certain system states or entity

attributes might be changed. The following sections will describe each event in detail, and the decision

conditions in the events are drawn in flow charts.

Figure 9 - Event Graph for the Model

29

3.4.1 job_arrive()

Figure 10 - EG for job_arrive()

In this event, generated Jobs arrive at the Grid Mover System. The Job interarrival time t0 is specified in

the model input, which is further elaborated in section 3.5. Next, the Job object, and its static attributes id

and arrival_time are stored in available_job_df. In the end, attempt_to_deploy() event is scheduled.

Figure 11 - Flow Chart for job_arrive()

3.4.2 attempt_to_deploy()

Figure 12 - EG for attempt_to_deploy()

In this event, each Job in available_job_df is attempted to be assigned to a Vehicle in the Grid Mover

System. This event is scheduled by job_arrive() event or start_parking() event. This is to say,

whenever the system receives a new Job or sets free a Vehicle, the system will start to deploy all the

30

available Jobs in the system. If a Job is matched with a Vehicle successfully and the Vehicle is able to pick

the Job right away, route() event will be scheduled for that Vehicle to plan the route.

The Deployment interface module is called in this event, where users write their own deployment algorithm.

The return value from the interface, all_vehicle_to_jobs_dict, a dictionary mapping Vehicle object to

a list of assigned Job objects, will overwrite the ̀ JobList` in vehicle_df based on the following algorithm.

• Case 1: When the Vehicle `Status` is "Park" in vehicle_df:

o The Vehicle is moving to its park position and has 0 Jobs assigned to it currently (`JobList`

is NaN), thus the Vehicle can directly take the new job allocation result, i.e. the list of Jobs

of this Vehicle in the dictionary will be added to its `JobList` in vehicle_df;

• Case 2: When the Vehicle `Status` is "Idle" in vehicle_df:

o Case 2.1: The Vehicle is parked at its park position with a NaN `JobList`, the Vehicle can

directly add the new list of Jobs from the dictionary to its `JobList`. If the modified

`JobList` is not NaN, route() event will be scheduled;

o Case 2.2: The Vehicle is waiting to start its first partial route (already requested its first

partial route for the current Job but failed). Since the Vehicle has not started moving, the

Vehicle will replace its `JobList` with the new list of Jobs from the dictionary. After that,

if the Vehicle is assigned with a new current Job, the previously requested partial route

becomes obsolete, thus the `DynamicRoute`, `ReservationPending`, `RequestTime` will

reset to NaN and route() event will be scheduled to reroute the Vehicle based on its new

current Job.

• Case 3: When the Vehicle `Status` is "Pick" or "Deliver" in vehicle_df:

o The Vehicle has an ongoing Job and cannot change its ongoing Job. If the new list of Jobs

from the dictionary has the first Job different from the ongoing Job, an error will occur and

the simulation will stop. Otherwise, the Vehicle will replace its `JobList` with the new list

of Jobs from the dictionary.

More information on the Deployment interface can be found in section 3.6.1.

31

Figure 13 – Flow Chart for attempt_to_deploy()

32

3.4.3 route()

Figure 14 - EG for route()

This event allocates a route for the Vehicle from its start position to end position, changes its `Status`

accordingly, and schedules partial_route_first_request(), start_loading(), or start_parking()

events under different conditions. The event is first scheduled by attempt_to_deploy(),

end_unloading() or end_loading() event. After that, the Vehicles passed in as parameters are first

categorized by their `Status` to help identify their end positions and schedule the next event based on the

following algorithm.

• Case 1: When the Vehicle `Status` is "Idle": The Vehicle could be just ending unloading the

previous Job item and heading towards the next assigned Job, or could just be assigned a new Job

at its park position, thus it is going to pick the Job.

o Case 1.1: The Vehicle’s current position happens to be its first Job’s picking position. It

can load the Job item right away, thus start_loading() event is scheduled and the Job is

deleted from available_job_df;

o Case 1.2: The Vehicle’s current position is not its first Job picking position, a route needs

to be generated to the picking position, hence Route interface is called and

partial_route_first_request() event is scheduled.

• Case 2: When the Vehicle `Status` is "Deliver": The Vehicle just ended loading the previous Job,

thus is going to deliver the Job:

o a route needs to be generated to the delivery position, thus Route interface is called and

partial_route_first_request() event is scheduled.

33

• Case 3: When the Vehicle `Status` is "Park": The Vehicle just ended unloading a Job and has no

Job assigned to it currently, thus is going to be parked:

o Case 3.1: The Vehicle’s current position happens to be its park position, it is parked right

away, thus start_parking() event is scheduled.

o Case 3.2: The Vehicle’s current position is not its park position, a route needs to be

generated to the park position, thus Route interface is called and

partial_route_first_request() event is scheduled.

The Route interface module is called in this event, where users write their own route algorithm. The return

value from the interface, route_list, will be the generated route in this event and will be used to update

`DynamicRoute` in __Vehicle_df. More information on the route interface can be found in section 3.6.2.

Figure 15 - Flow Chart for route()

34

3.4.4 partial_route_first_request()

Figure 16 - EG for partial_route_first_request()

This event requests the first partial route of the Vehicle, and is only scheduled by route() event. At the

start, the Request interface module is called in this event, where users write their own request algorithm.

The return value from the interface, partial_route, will be the partial route to be requested. The request

can be either successful or failed, which will affect the next event scheduled. The conditions are as follows:

• Case 1: Request Successful

o If all the Square Units in the requested partial route have no vehicle reservation, i.e. the

`OccupiedVehicle` in grid_df is NaN, then the Vehicle will reserve all the Square Units

in the partial route, and the partial route is considered successfully requested. Subsequently,

the `OccupiedVehicle` for these Square Units are updated into this Vehicle in grid_df,

and attempt_to_start_partial_route() event is scheduled.

• Case 2: Request Failed

o If any of the Square Units in the partial route is already reserved by another Vehicle, the

Vehicle will fail to request the partial route, so the partial route is sent to the Vehicle's

`ReservationPending`, and the request time is recorded in ‘RequestTime’ column in

vehicle_df.

35

Figure 17 - Flow Chart for partial_route_first_request()

36

3.4.5 attempt_to_start_partial_route()

Figure 18 - EG for attempt_to_start_partial_route()

This event checks if the Vehicle can start moving along its partial route, i.e. to schedule

start_partial_route() event. To achieve this, the Vehicle must make sure that it has successfully

requested the partial route. Otherwise, the Vehicle cannot start traveling. Events

partial_route_first_request(), complete_partial_route() and allocate_partial_route_for

_pending_vehicle() can schedule attempt_to_start_partial_route() event.

Figure 19 - Flow Chart for attempt_to_start_partial_route()

37

3.4.6 start_partial_route()

Figure 20 - EG for start_partial_route()

In this event, Vehicle starts to travel its partial route. It first adds the current partial route to

`ReservationToRelease` and deletes it from ̀ Reservation` in vehicle_df. After some random time t1 before

the partial route is finished, the Vehicle requests for its next partial route, i.e. schedule

partial_route_request() event, where `Reservation` in vehicle_df will be further updated. After a

fixed period t2, the partial route is finished (since the distance and vehicle pace are fixed), hence

release_partial_route() event is scheduled.

One thing to take note of is that, at the start of this event, if Vehicle `Status` is “Idle”, it means the Vehicle

just ended unloading the previous Job item and heading towards the next assigned Job, or could just be

assigned a new Job at its park position, therefore it is going to pick the Job. Hence, the `Status` will be

changed to “Pick” and its current Job will be deleted from available_job_df.

Figure 21 - Flow Chart for start_partial_route()

38

3.4.7 partial_route_request()

Figure 22 - EG for partial_route_request()

This event requests the partial route of the Vehicle, except for the first partial route and is scheduled by

start_partial_route() event only. The logic in this event is similar to

partial_route_first_request(), except that it does not schedule any event. The Request interface

module is called in this event, where users write their own request algorithm. The return value from the

interface, partial_route, will be the partial route to be requested. The request can be either successful or

failed, which will affect the next event scheduled. The conditions are as follows:

• Case 1: Request Successful

o If all the Square Units in the requested partial route have no vehicle reservation, i.e. the

`OccupiedVehicle` in grid_df is NaN, then the Vehicle will reserve all the Square Units

in the partial routes, and the partial route is considered successfully requested.

Subsequently, the `OccupiedVehicle` for these Square Units is updated into this Vehicle in

grid_df.

• Case 2: Request Failed

o If any of the Square Units in the partial route is already reserved by another Vehicle, the

Vehicle will fail to request the partial route, so the partial route is sent to the Vehicle's

`ReservationPending` column, and the request time is recorded in ‘RequestTime’ column

in vehicle_df.

39

Figure 23 - Flow Chart for partial_route_request()

3.4.8 release_partial_route()

Figure 24 - EG for release_partial_route()

40

This event indicates the Vehicle has reached the last Square Unit of the partial route. It is scheduled by

start_partial_route() event and releases the finished partial route. Also, it updates Vehicle

`StartPosition`, schedules complete_partial_route() event and allocate_partial_route_for

_pending_vehicle() event under certain conditions.

In detail, it first removes the finished partial route section from the Vehicle’s `DynamicRoute` in

vehicle_df, and sets the Square Unit that the Vehicle is currently at as the new `StartPosition` for the

Vehicle’s next partial route. Next, it releases the Square Units in the Vehicle’s `ReservationToRelease` by

setting the `OccupiedVehicle` in grid_df to NaN. However, the current `StartPosition` is excluded in

releasing as it is still occupied by the Vehicle, but the previous `StartPosition` will be released. In addition,

`VehicleVia` in grid_df for the released Square Units are increased by one, since one more Vehicle has

passed through the Square Units. After that, the system checks if there are any Vehicles in the system

pending to reserve a partial route, i.e. failed in the partial route request before. If true,

allocate_partial_route_for_pending_vehicle() event will be scheduled. In the end,

complete_partial_route() event is scheduled to indicate the completion of the partial route and data

update.

Figure 25 - Flow Chart for release_partial_route()

41

3.4.9 allocate_partial_route_for_pending_vehicle()

Figure 26 - EG for allocate_partial_route_for_pending_vehicle()

This event allocates released Square Units to pending Vehicles, and schedules

attempt_to_start_partial_route() event if the Vehicle’s requested partial route is successfully

allocated and the Vehicle has finished the current traveling partial route. The event is scheduled by

release_partial_route() event, in which some Square Units are released, thus making way for the

pending Vehicles. Sorting all the Vehicles that are pending for their partial routes in the system

(`ReservationPending` is not NaN) according to `RequestTime` in ascending order, the system allocates

partial routes to pending Vehicles from the oldest to the most recent one by one. As long as the Vehicle’s

requested partial route in `ReservationPending` becomes available now (`OccupiedVehicle` of the Square

Units are NaN), the partial route will be allocated to the Vehicle. Hence, the data in `ReservationPending`

will be moved to `Reservation` and the Vehicle will be set as the `OccupiedVehicle` for these Square Units.

After that, the system proceeds to the next pending Vehicle. For all pending Vehicles that have been

successfully allocated with their requested partial routes, and have completed the current traveling partial

routes, attempt_to_start_partial_route() event will be scheduled for them.

42

Figure 27 - Flow Chart for allocate_partial_route_for_pending_vehicle()

43

3.4.10 complete_partial_route()

Figure 28 - EG for complete_partial_route()

This event indicates the completion of the current partial route and records the completion time to

`PartialRouteCompleteTime` in vehicle_df. It is scheduled by release_partial_route() event only,

and it schedules attempt_to_start_partial_route(), start_parking(), start_loading(),

start_unloading() based on different conditions, as described in the following:

• Case 1: If the Vehicle has not completed its full route, i.e. its `DynamicRoute` is not NaN

o attempt_to_start_partial_route() event will be scheduled to try to start its next

partial route.

• Case 2: If it completes its full route, meaning it has already reached its destination position to pick

or deliver a Job, or to park itself, the next event will be scheduled based on conditions.

o Case 2.1: When the Vehicle’s `Status` is “Park”, the Vehicle is going to park, thus

start_parking() event will be scheduled.

o Case 2.2: When the Vehicle’s `Status` is “Pick” or “Deliver”, the Vehicle is picking or

delivering a Job

▪ Case 2.1: If the Vehicle is at current Job's picking position, it reaches the

destination to pick the Job, thus start_loading() event will be scheduled.

▪ Case 2.2: If the Vehicle is at current Job's delivery position, it reaches the

destination to deliver the Job, thus start_unloading() event will be scheduled.

44

Figure 29 - Flow Chart for complete_partial_route()

45

3.4.11 start_loading()

Figure 30 - EG for start_loading()

This event starts loading the Job item onto the Vehicle and clears `PartialRouteCompleteTime`. After a

fixed period of loading duration t3, which is specified in the model input, end_loading() event is scheduled.

Figure 31 - Flow Chart for start_loading()

46

3.4.12 end_loading()

Figure 32 - EG for end_loading()

This event finishes loading the Job item onto the Vehicle. Since the Job item is already picked up, the

Vehicle is going to deliver the Job. The Vehicle `Status` is changed to “Deliver” and route() event is

scheduled to find the route to its delivery position.

Figure 33 - Flow Chart for end_loading()

47

3.4.13 start_unloading()

Figure 34 - EG for start_unloading()

This event starts unloading the Job item from the Vehicle and clears `PartialRouteCompleteTime`. After a

fixed period of unloading duration t4, which is specified in the model input, end_unloading() event is

scheduled.

Figure 35 - Flow Chart for start_unloading()

48

3.4.14 end_unloading()

Figure 36 - EG for end_unloading()

This event finishes unloading the Job item from the Vehicle, and the Job is considered finished, thus is

removed from the Vehicle’s `JobList`. If the Vehicle still has Jobs in its `JobList`, the Vehicle `Status` will

be changed to “Idle” and route() event will be scheduled to find the route to the picking position of the

next Job. The reason for it being idle is that, as long as it has not started traveling on the route, the Vehicle’s

`JobList` is subject to change, depending on the deployment result. However, if the Vehicle has a NaN

`JobList`, meaning it has no Job allocated, its `Status` will be turned into “Park” and route() event will be

scheduled to find the route to its park position.

Figure 37 - Flow Chart for end_unloading()

49

3.4.15 start_parking()

Figure 38 - EG for start_parking()

In this event, the Vehicle is parked at the park position, occupies the Square Unit. Therefore, it becomes

the `OccupiedVehicle` of the park position Square Unit and its `Status` is changed from “Park” to “Idle”,

which means it is ready for new Job allocation or starting to handle new Job. Besides,

`PartialRouteCompletTime` will be deleted. In the end, attempt_to_deploy() event is scheduled.

Figure 39 - Flow Chart for start_parking()

50

3.5 Input

In the input file, some static attributes for the Grid Mover System are specified, including Transportation

Network id, start_point, dimension, obstacle_list and available vehicle resources, including the

Vehicle’s id, and park_position.

Refer to Figure 40 for the attributes that are specified in the model input. They are highlighted in red in the

ERD and the attribute definitions can be found in Table 2 and Table 4.

Figure 40 - Model Input Data in ERD

Other model inputs are associated with Job generations. The Jobs arrive at the Grid Mover System with an

inter-arrival time of exponential distribution, and the rate parameter λ is specified in the input. Each Square

Unit is associated with a Picking Rate and a Delivery Rate. The Picking Rate and Delivery Rate specify the

comparative frequency at which a Square Unit becomes a Job’s picking position and delivery position, with

default value 1. Some Square Units are more popular picking positions while some are more popular

delivery positions, or the other way around. Their Square Unit Indexes and the special Picking Rates and

Delivery Rates are specified in the input. The input variables associated with Job generations are listed in

Table 8. In the end, the assignment of picking and delivery locations to the arrived Jobs is calculated using

the input with the Alias method.

51

Table 8 - Model Input Data not in ERD

Property Name Type Description

Lambda int The rate parameter of the exponential distribution of the Job inter-

arrival time.

DeliveryDefaultRate float The default comparative frequency at which the Square Unit becomes

a Job’s delivery position.

PickingDefaultRate float The default comparative frequency at which the Square Unit becomes

a Job’s picking position.

SquareUnitIndex Tuple<int, int> The square_unit_index of the Square Unit which has a special

Picking Rate and/or Delivery Rate.

DeliveryRate float The special comparative frequency at which the Square Unit becomes

a Job’s delivery position.

PickingRate float The special comparative frequency at which the Square Unit becomes

a Job’s picking position.

52

3.6 Interface

There are three interface modules connected to the Grid Mover System Handler: Deployment, Route and

Request, each contains default algorithms for Job-Vehicle matching deployment, vehicle route planning,

and collision avoidance by partial route request. In each module, the users can edit the code and write their

coded algorithm inside the user_algo() function. Figure 41 illustrates an example of the location of

user_algo() in Deployment Interface. Similar to Route and Request interfaces.

Figure 41 - An Example of the Location of user_algo() in the Deployment Interface

Other than that, the users can use the data that are available in the interface modules in their algorithms,

and the algorithms must return data back to the main Grid Mover System Handler in a format that is the

same as the default algorithm. If not, the Grid Mover System Handler may return errors. If the user

algorithm returns None, it will be skipped, and the default algorithm will be executed. Therefore, the users

must be familiar with the input and output data for each interface module, i.e. data available in the interface

and data to be returned. They are explained in the following section.

Figure 42 - The Relationship Between the Grid Mover System Handler and the Interface Modules

53

3.6.1 Deployment

Deployment interface module is called in attempt_to_deploy()event, which attempts to match each Job

in available_job_df with a Vehicle based on written algorithms. The input parameters are two

DataFrames, available_job_df and vehicle_df from the Grid Mover System Handler, and the return

value is a dictionary all_vehicle_to_jobs_dict, which will overwrite the original vehicle_df in the

Grid Mover System Handler based on certain rules (see attempt_to_deploy() event in section 3.4.2). The

description of available_job_df and vehicle_df can be found in section 3.2, and the description of

all_vehicle_to_jobs_dict is in Table 9.

Figure 43 - Input Data and Return data for Deployment Interface Module

Table 9 - Input and Output Variables for Deployment Interface

Type Variable Type Description

Input available_job_df DataFrame See section 3.2.3

vehicle_df DataFrame See section 3.2.1

Return all_vehicle_to_jobs_dict Dictionary<Vehicle:

List<Job>>
A dictionary where the Vehicle objects are the keys and

the lists of Job objects deployed to the respective Vehicles

are the values.
e.g. {Vehicle1: [Job1, Job2], Vehicle2: [Job3],...}

Each Job in the available_job_df is attempted to be

assigned to a Vehicle. All Vehicle objects in the Grid

Mover System appear as keys in the dictionary.

The default deployment algorithm is described in Figure 44, which allocates each Job in available_job_df

with the nearest Vehicles that are within the acceptable range of distance.

54

Figure 44 - Deployment Default Algorithm

55

3.6.2 Route

Route interface module is called in route()event, which calculates routes for the Vehicles from their origin

to destination Square Units based on written algorithms. The input parameters are two objects

transportation_network and vehicle (see section 3.1 for description), and two other variables

start_square_unit and end_square_unit, whose descriptions can be found in Table 10. The return

value is a list of Tuple integer pairs path, which will overwrite the values of ̀ DynamicRoute’ in the original

vehicle_df in the Grid Mover System Handler based on certain rules (see route() event in section 3.4.3).

The description of path variable can be found in Table 10.

Figure 45 - Input data and Return Data for Route Interface Module

Table 10 - Input and Output Variables for Route Interface

Type Variable Type Description

Input vehicle Vehicle See section 3.1

transportation_network Transportation

Network
See section 3.1

start_square_unit Tuple<int,int> The square_unit_index of the origin Square Unit of the

Vehicle.

end_square_unit Tuple<int,int> The square_unit_index of the destination Square Unit of

the Vehicle.

Return route List<Tuple<int,

int>>
The list of square_unit_index of the Square Units in the

assigned route of the Vehicle, including

start_square_unit and end_square_unit

The default route algorithm uses A* algorithm to generate routes for the Vehicles.

56

3.6.3 Request

Request interface module is called in partial_route_request() and partial_route_first_request()

events, which reserves the partial route for a traveling Vehicle to avoid traffic collision. The input

parameters are one object vehicle (see section 3.1 for description), and two DataFrames vehicle_df and

grid_df, whose descriptions can be found in Section 3.2. The return value is a list of Tuple integer pairs

partial_route, which will overwrite the values of `Reservation` or `ReservationPending` in the original

vehicle_df in the Grid Mover System Handler depending on if the request being successful or not .The

`OccupiedVehicle` in grid_df will also be updated if the partial route request is successful (see

partial_route_request() and partial_route_first_request() event in section 3.4.4 and 3.4.7 for the

conditional update).The description of return variable partial_route can be found in Table 11.

Figure 46 - Input data and Return Data for Request Interface Module

Table 11 - Input and Output Variables for Request Interface

Type Variable Type Description

Input vehicle Vehicle See Section 3.1

vehicle_df DataFrame See Section 3.2.1

grid_df DataFrame See Section 3.2.2

Return partial_route List<Tuple<int,

int>>
The list of square_unit_index of the Square Units in the partial route

to be reserved for the Vehicle, excluding the start_position of the

Vehicle

In the default request algorithm, the Vehicle requests 3 Square Units from its remaining route as its next

partial route. The remaining route refers to the remaining Square Units in its full route after the Vehicle

completes its current partial route.

57

3.7 Output

The output generated for each simulation run is for users to observe the performance of the Grid Mover

System, which is illustrated in Figure 47. The output variables include the Total Number of Jobs

Generated, statistics on finished Jobs and unfinished Jobs, and average cycle time. The output variables

and their definitions are listed in Table 12.

Figure 47 - An Illustration on Model Output

Table 12 - Model Output Data

Output Variable Unit Type Description

Total Number of Job Generated
- int The total number of jobs generated during the

simulation time.

Finished

job

Quantity - int The total number of jobs that are completed

successfully, i.e., successfully unloaded at the

delivery position.

Effective

Duration with

Load

seconds float The total sum of durations during which the Vehicles

travel carrying a load, excluding all the waiting times

for Square Units.

Effective Ratio - float The ratio between Effective Duration with

Load to Total cycle time for finished jobs (from

being generated to being unloaded successfully).

Average Job

Cycle Time
seconds float Total cycle time for finished jobs / Quantity for

finished job

58

Unfinished

job

Quantity

- int The total number of jobs that are not completed.

Penalty Time

Per Job

seconds float Penalty time for each unfinished job. It depends on

the total number of square units in the transportation

network.

Delay Due to Waiting for Pick

Up (Job)
seconds float The sum of durations of jobs waiting for vehicles to

pick up.

Delay Due to Traffic

Congestion (Loaded Vehicle)
seconds float The pending duration is caused by traffic congestion

(i.e. waiting for square units) while the vehicle is

loaded.

Delay Due to Traffic

Congestion (Empty Vehicle)
seconds float The pending duration is caused by traffic congestion

while the vehicle is empty.

Duration Without Load seconds float The total sum of durations during which the vehicles

travel without carrying a load.

Adjusted Average Job Cycle

Time

seconds float (Total cycle time for finished job + Quantity for

unfinished job * Penalty Time Per Job for unfinished

job) / Total Number of Job Generated

59

Chapter 4

Evaluation

4.1 File Submission Format

1) Zip package of interface folder

Attention:

a. Any modifaction related to interface should be put under interface folder,

including newly created class for interface algorithms purposes. Changes in other

folders will not be considered.

b. Beside interface folder, a text document of additional Python package installed

should be included in the zip file.

2) Naming rule: Team Name_Round Number (e.g. SealTeam_Round1.zip)

4.2 File Submission Process

After joining a team, there will be a Submission section for competitors to submit files.

60

4.3 Evaluation Criteria

1) Competitors’ interface will be adopted to simulate the given scenario as well as the hidden

scenario for the last round.

2) “Adjusted Average Job Cycle Time” from the output is the only criteria to evaluate system

performance.

3) In the evaluation stage, multiple random seeds will be used to calculate the average performance

for each round. And only codes that run successfully will get scores.

61

4) Weightage and score of each round:

Weightage Table

Round Number Round 1 Round 2 Round 3 Hidden Round

Weightage 5% 15% 30% 50%

The full score of each round is 100. The score for the top 10 teams will decrease by 5 from 100 according

to team's rank (i.e. the number 1 ranking team will be scored as 100, the second ranking team 95, etc.).

The rest of the teams after the top 10 teams will receive a score of 50.

