WSC Case Competition
Tech Document

Centre for Next Generation Logistics
Industrial Systems Engineering and Management
College of Design and Engineering

NUS

National University
of Singapore

Centre of Excellence in Modelling and Simulation for Next Generation Ports
Industrial Systems Engineering and Management
College of Design and Engineering

I NUS
%

National University
of Singapore

&z

HUAWEI

SUMMARY

In line with the spirit of “Reimagine Tomorrow”, the theme for this year’s Winter Simulation Conference
(WSC), we are thrilled to introduce our Case Study Competition which will examine the role of simulation
in next-generation industrial systems as well as plant the seeds of collaboration between academia and

industry.

Titled “Smart Simulation for Intelligence Incubation”, the competition aims at demonstrating and
promoting simulation’s ability to cooperate with optimization rules and data learning in order to improve
the overall performance of intelligent systems. It will provide participants with an opportunity to explore

and exploit the use of simulation tools in supporting real-time decision analysis under different scenarios.

Using the automated grid mover system as the case study for this competition, we have built a basic
simulation system model with discrete-event modelling methods and implemented it in O2DESpy, which
is a framework for object-oriented discrete event simulation based on standard Python 3.x. Participants are
expected to embed their own algorithms in certain parts of the model, using their skills in model training
and large-scale search, to improve the grid mover system performance. The teams that generate the best

overall performance stand the best chance to win.

The purpose of this document is to provide participants with detailed descriptions on the model structure,

and to guide them on the process of file downloading and submission procedures.

https://github.com/huawei-noah/noah-research/tree/master/o2despy

CONTENTS

Y 1A 2SRRI i
(1@ LI I 1 N 5 TSP ii
LIST OF FIGURES ..ottt b e bbbttt ettt et iv
LIST OF TABLESot bbbttt bbbt e sttt b ettt nn et e e %
CRAPTET 1 OVEIVIBW ...ttt bbb et stk e bt bbbt e et et e bt bt bbb n e 1
1.1 Problem DESCIIPLIONc..oiiiiieiieieiteste ettt n e nn e n e 1
1.2 COMPELITION RUIES ...ttt sbe et e be e e ae s re e e sreeres 3
1.3 General EVAIUALION GUITE.......c.ciiiiiieie sttt sttt ste st esaesre e e e steeneeseeenen 5
Chapter 2 USEr INSTIUCTIONS. ...ttt bbbttt eb et b e 6
2.1 INSEAIT PYENON ... et e s b e e te e besbeere e beeneesreares 6
2.2 INSEAIL PYCRAI ..ottt st e s be e e s be e ne e be s re e e e be e e e sreares 8
2.3 DOWNIOAA SOUICE COUEoovviiiieieiesieeie sttt ettt sttt et ne et e staeseesreesaenrenres 11
2.4 AJd PYTNON INTEIPIETET.iitiiiitiieet ettt 11
2.5 Add Python Packages INStallation..............ccceiiiiiiiiiii et 16
Chapter 3 Data in the Discrete-Event Simulation Model............cccooiiiiiiiiniicc s 19
KT8 O 01 =TSSR SSPS 19
3.2 DALAFTAIME........eee ettt b e b e bt e b et b bt et et e e nbe e nhe e nne e aneenns 23
32,1 VENICIE AF .o ettt s e e b e ae e e te b sreeteerenre s 23
B.2.2 IO AT bbbttt e 24
3.2.3 available JOh df ..o e are s 24
3.3 ACLIVity-Based DESCIIPLION.......ccciciiiiiie ettt re et s re b e be e b e sreetaesresre s 25
34 T | PO PP P PO T PP PPPPTPPN 28
AL OB AITIVE() woeieeieeeeee bbbttt 29
3.4.2 attempPt_t0_dEPIOY() .icveeieie ittt a et reetaenreare s 29
KT T (0171 (=] (SRRSO 32
3.4.4 partial_route_firSt_reqUEST().......ererrerrerieieieiries sttt 34
3.4.5 attempt_to_start_partial_roUte()........cceeeririeee e e 36
3.4.6 Start_Partial_FOULE()oue ettt sttt see et et nae e e saeeraenrenneas 37
347 PArtial_roUte_TEOUEST() . ..eoverrerterteriereieie ettt bbbttt bbb 38
3.4.8 release _Partial_FOULE()ooeiiierieieieiees bbb 39
3.4.9 allocate_partial_route_for_pending_VENiCle()cooerieriiiie e 41
3.4.10 complete_Partial_FOULE()veouereereeiteeie ettt st e st e e e ste e seeeneeneenneas 43

3411 SEArt_OAAING() ..veveueereereeieeiiei sttt 45

KR =T Vo [To = To [T To [SRRSO 46
3.4.13 Start_UNIOAAING() ...ovecveeieiie ettt et b e e b et e ta et e sreeraenrenre s 47
3.4.14 eNU_UNIOAAING() -+ eurervereereeienierieete sttt b et b ettt e et b e nn b nn e 48
3.4.15 SEArt_PANKING() .. e veurereereeieetieiert ettt b ettt n e 49
3.5 8] o PSSR SRRTRN 50
TG 101 (=T - T ST PR TSP 52
3.6. 1 DEPIOYMENT....c.eceieeee et 53
BB.2 ROULE ..ttt bbbttt bt h bR h bRt R e bRt e bRt et nhe b e e bt 55
B TR B LT [T PR R 56
B © 101 | ST TSP TP PROP PR PRRPRTON 57
Chapter 4 EVAIUALION.......c..oiiiiiiiiite ettt bbb bbb 59
4.1 File SUDMISSION FOMMALccoiiiiiieieicieece ettt sb e s ne e 59
4.2 File SUDMISSION PrOCESS......eiieiiiiiieeiesieeiiesie st steste e steste e e steeseeste e e stesteesaesteeseetesseeneesteaneeneeanes 59
R Y - L[N E- 1 [0 IO €1 (- 1 T WSS 60

LIST OF FIGURES

Figure 1 - Traditional WAIENOUSE ..ottt b et bbbt bbb bbb e b nn e 1
Figure 2 - Various Warehouse Layout and Traffic DESIGNScoveveieiiiiiie e 2
Figure 3 - Grid-based Traffic ENVIFONMENTcoiiiii ittt sttt et e reene e e et esnenrenns 3
Figure 4 - COMPELITION FOIMALottt bbbt b e et b bbb e bt nb et eb e nb e ebenr e b e nbe e 4
Figure 5 - An HHUSEration OF ENTITIES.coveiieieiiiteieest e bbbttt b 19
Figure 6 - Entity Relationship Diagram (ERD)ccccciiiiiiiieieiese s se ettt e e et sre st e snaesaenseseesnens 20
Figure 7 - Entity Flow Diagram (ACtIVItY-Based)coeiiiiiiiiii e 25
Figure 8 - An Hustration 0N TraVeling PrOCESS........ciiirieiiterieiite ittt b et nb e et nb e 27
Figure 9 - Event Graph for the MOGE ..ottt st st reene e et e seenrea 28
Figure 10 - EG TOr JOD_AITIVE() c.veveieiiie sttt ettt st et et eena e e et e e stesbesteeneeneenneeenrens 29
Figure 11 - FIow Chart fOr JOD_arrive()oeo ettt bbbt nb e 29
Figure 12 - EG for attempt_t0_dePIY()evorerieiieieiiteree ettt bbb e 29
Figure 13 — Flow Chart for attempt_to_deploy()....cc.eoviiieiie ettt ae s 31
FIQUIE 14 = EG TOF FOULE() .. tveeeteiteiete sttt ettt bbbt bbb bbb bbb bbb bbbt nb e bbb n e 32
Figure 15 - FIOW Chart fOr FOULE()e.viveieeiiteieeiisie ettt bbb bbbttt ettt b e 33
Figure 16 - EG for partial_route firSt_reqUEST()........eciveiiieiieeiie e ettt e e te e te e e naeanees 34
Figure 17 - Flow Chart for partial_route_firSt_reqUESE()ciiveieiieiiicie e 35
Figure 18 - EG for attempt_to_start_partial_rOUE().........courireiiiiiiiee e 36
Figure 19 - Flow Chart for attempt_to_start_partial_FOULE()ccviieiieiieiieie e 36
Figure 20 - EG for start_partial_FOULE().......ccveieeireieiiiiie e s sttt ettt e e steeste e ae s b e sseesnaesteesteesbeeneeannes 37
Figure 21 - Flow Chart for start_partial_rOULE()coereereieeieieesie et 37
Figure 22 - EG for partial_rOUE_FEUEST()eeirerieiiterieeste ettt ettt bt b ettt 38
Figure 23 - Flow Chart for partial_route_TeqUESE()c.ecveieeiieeie ittt e e te e te e nraeanees 39
Figure 24 - EG for release_partial_FOULE()cvierieiieieeste ettt bbbt 39
Figure 25 - Flow Chart for release_partial_rOULE()coeerereiieieese e 40
Figure 26 - EG for allocate_partial_route_for_pending_VehiCle()ccovveiieiiiie i 41
Figure 27 - Flow Chart for allocate_partial_route_for_pending_Vehicle().........ccoovvieiiiiieiiiie e, 42
Figure 28 - EG for complete_partial_rOULE()oooeiiirieeie et 43
Figure 29 - Flow Chart for complete_partial_rOULE()ccooereiiiiiiieriee e 44
Lo [V R I =TT {oT gy =L A [o = Vo 11 Vo SRS 45
Figure 31 - Flow Chart for Start_108diNG()covoereeieieeie ettt 45
Figure 32 - EG fOr @N0_l0AGING() -+ veververeereiteiieieite ettt b et b bbbttt sttt bbb 46
Figure 33 - Flow Chart for end_10A0ING()eoveiieiiiie ettt te e e st e s e e teesreesneannes 46
Figure 34 - EG for Start_UNIOAOING() .. veoveerreieeiiee et ettt ettt ste e te st e reesteesteeteensesnbessaesteesteesreeseeannes 47
Figure 35 - Flow Chart for start_unloading()coooeiereiiiiiee bbb 47
Lo [V R oI (R (T g=Ta o [V] (o= Vo [Tg o () SRS 48
Figure 37 - Flow Chart for end_unloadiNng().......cccueieiiiiieiie it e st teesteeneannes 48
Figure 38 - EG fOr Start_ParkiNg()eoeeiereerieniee sttt bbbt b et b bbbttt be e 49
Figure 39 - Flow Chart for Start_parking()cccoereeiereeieie bbbt 49
Figure 40 - Model INPUE DAta iN ERDcoiiiiiiiiiie et sttt bbb s e bbb 50
Figure 41 - An Example of the Location of user_algo() in the Deployment Interfaceccccoovevevieneineneinenen, 52
Figure 42 - The Relationship Between the Grid Mover System Handler and the Interface Modules..............ccccc....... 52
Figure 43 - Input Data and Return data for Deployment Interface Module............ccoooiiiiiiiiinin e 53
Figure 44 - Deployment Default AIGOFtM ..o e bbb 54
Figure 45 - Input data and Return Data for Route Interface Module............ccoeiiiiiiiiiiiiec e 55
Figure 46 - Input data and Return Data for Request Interface MOdUIE.............ccooeriiiiiiiiiene e 56
Figure 47 - An Hlustration 0N MOGEI OULPUL........c.eiiiiiiiiiiiieeieie ettt bbb ne e b b e 57

https://nusu-my.sharepoint.com/personal/e0322919_u_nus_edu/Documents/WSC%20Doc%20Final%20Doc.docx#_Toc110115175
https://nusu-my.sharepoint.com/personal/e0322919_u_nus_edu/Documents/WSC%20Doc%20Final%20Doc.docx#_Toc110115176

LIST OF TABLES

Table 1 - AtriDULES OF SQUAIE UNIT ...ttt 21
Table 2 - Attributes of TranSportation NETWOTKcouiiiiiiiiiiii e 21
Table 3 - ALFTDULES OF JOD ...ttt sttt a et e e et st esbesbeeneereeneeneeseenras 22
Table 4 - ARFDULES OF VENICIE ..ottt enes 22
Table 5 - Hlustration 0f VENICIE AFcviieiecc et e e srenns 23
Table 6 - HHUuStration Of Grid_ 0coiiiiccec et r et e eere e e e e e eeneens 24
Table 7 - Hlustration of available_joh df ..o e s 24
Table 8 - Model Input Data NOt iN ERDcviiiiiiiiiiiie ettt sttt st b e e ena e e e e nrenns 51
Table 9 - Input and Output Variables for Deployment INErfaceooooviiriiiiniieee s 53
Table 10 - Input and Output Variables for Route INtErfacecoooviiiiiiiieiee e 55
Table 11 - Input and Output Variables for Request INTErface ..o e 56
Table 12 - MOTE] OULPUL DALA........ccuireeiiitiiieietiieeeet ettt bbb bt b ettt eb bttt bt b e enes 57

Chapter 1
Overview

1.1 Problem Description

Welcome to the challenge. In this journey you are expected to make use of your simulation skills, in
cooperation with optimization and data learning techniques to improve the performance of a fully

automated grid mover system in a warehouse.

N W
SN) |l "

Figure 1 - Traditional Warehouse

A warehouse, as shown in Figure 1, stores products for stocking, packing, and shipping preparations. It is
a central location that manages both inbound and outbound SKUs. Traditional operations of a warehouse
depend heavily on human labor, such as picker, packer and forklift driver. However, with the force of
globalization and the growing demand in e-commerce, warehouses must scale up their operations to
facilitate the surging logistics demand in order to make the operations more intelligent, accurate and
efficient. Therefore, warehouse digitalization would be the major trend in the next decades. Some of the
promising warehouse digitalization technologies include real-time data gathering and interconnectivity,
Autonomous Guided Vehicles (AGV), smart analytics and machine learning.

Our warehouse, “Avatar”, recently opened its doors to such disruptive technologies, which involves AGVs
as the main transport to facilitate the movement of SKUs in between shelves and different work stations, to
meet its ever-rising throughput demand and free up human labors. The AGVs are deployed automatically

with real-time data and are capable of self-navigation. However, great challenges arise in ensuring traffic

efficiencies due to the large volume of SKUs and limited AGV and warehouse space resources, as well as
the potential for traffic congestion.

To solve this problem, the research team has decided to build a simulation model to test on different AGV
intelligent deployment, route planning and collision management algorithms. However, the AGV traffic
networks in real warehouses are complex, containing intersecting lanes, road obstacles, pick-up and drop
off points, and their designs could vary depending on the warehouse layout and equipment resources (shown

in Figure 2).

Figure 2 - Various Warehouse Layout and Traffic Designs

To build a model that can represent a generic and robust estimation of AGV traffic network, a grid-based
environment is adopted. As shown in Figure 3, grids are used to represent the vehicle traffic network with
traversable square units. This mosaic structure allows different traffic layouts to be modeled by blocking
certain square units. Building upon this traffic environment, other operations such as job generation, job
deployment, vehicle route planning and movement, loading and unloading processes are incorporated into
the model, forming the “Grid Mover System”. The simulation model is implemented in python using

discrete-event methodologies.

Figure 3 - Grid-based Traffic Environment

First of all, your task in this challenge is to help “Avatar” devise a new vehicle deployment algorithm, route
planning algorithm and collision avoidance algorithm (route reservation algorithm). This is then followed
by rewriting and replacing the existing decision rules in the given model. Last but not least, you are to use
your knowledge in model training and large-scale search to maximize the performance of the Grid Mover

System under different simulation scenarios.

Good luck helping Avatar break its new through-put record:)

1.2 Competition Rules

As shown in Figure 4, the given model contains data and source code according to the following three

aspects of information:
(A) Input: Example simulation scenarios with specific parameters.

(B) Interface: The three decision modules where users can modify the code for their own decision
algorithms for vehicle deployment, route planning and collision management through partial route
reservation request. The respective names for the modules are “Deployment”, “Routing” and “Request”.

The default algorithms will be provided too.
(C) Output: Performance indicators to measure the efficiency and quality of the Grid Mover System

Part (A) (B) (C) will be further elaborated in the “Data” section 3.5, 3.6 and 3.7 respectively. Apart from

these three aspects, the discrete-event simulation model will also be provided for user’s reference.

Discrete-Event Simulation (C) Performance

{A) Scenario

Model Indicators
Meta-Heuristics
/ Decision Rules ‘
i (B) Decision Ranking & Selection
i Modules [/ Large-scale Search
¥

Training under

‘ . Rule Designs
various scenarios

/ Parameters

Figure 4 - Competition Format

You are expected to rewrite and replace the existing decision modules (B) with Python language, to
maximize the performance (C) of the Grid Mover System under different scenarios (A) through model

training and large-scale search.
You can generate the logic rules in Part (B) in various ways, including but not limited to:

a. Writing rule-based scripts or heuristic algorithms embedded in decision events
b. Embedding simulation model into external optimization search algorithm
c. Using the machine learning model to identify and conclude the best rule parameters and embed

them in decision events

You only need to provide part (B) of the program code and required data, and there is no need to submit
optimization and training program.

Note: all other source code besides those for Part (B) will not be evaluated or runed.

1.3 General Evaluation Guide

Your data and program code will be embedded in the discrete-event simulation model provided in advance,
overwrite the corresponding original code, and compile and generate an executable simulation program.
Your program will run under a variety of scenarios and random seeds. The winner will be the one whose

model generates top average performance index for each case.

For further instructions regarding file downloads, submissions please see Chapter 2 and Chapter 4. For
elaborations on model structures and available data, please see Chapter 3. For detailed evaluation criteria,
please see Chapter 4.

Chapter 2
User Instruction

2.1 Install Python

1) Go to website https://www.python.org/downloads/ and click Download button to download the

python executable installer

Python

& python .

About Downloads Documentation Community Success Stories News Events

Looking for Python with a different OS? Python for Windows,

e
Download the latest version for Windows m \ \: ‘7‘
f | / "
) o

Linux/UNIX, macOS, Other
Want to help development versions of Python? Prereleases,

Docker images

Looking for Python 2.72 See below for specific releases

2) Double click the downloaded .exe file and start the installation process
3) Tick both the Install launcher for all users and Add Python 3.10 to PATH checkboxes

% Python 3.10.5 (64-bit) Setup - X

Install Python 3.10.5 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\10849\AppData\Local\Programs\Python\Python310

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation

Choose location and features
python —

for M Install launcher for all users (recommended)

WiﬂdOWS [MiAdd Python 3.10 to PATH: Cancel

https://www.python.org/downloads/

4) Click Install Now
£ Python 3.10.5 (64-bit) Setup = X

Install Python 3.10.5 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\10849\AppData\Local\Programs\Python\Python310

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize installation
Choose location and features

thon
pg for [Install launcher for all users (recommended)

windows 21 Add Python 3.10 to PATH ot |

5) Wait for a while to complete the installation process and after successful setup, close the

dialogue box

Setup was successful

New to Python? Start with the online tutorial and

documentation. At your terminal, type "py" to launch Python,
or search for Python in your Start menu.

See what's new in this release, or find more info about using
Python on Windows.

@ Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

h

pgthgn N\

windows [Gose

2.2 Install PyCharm

1) Go to the website https://www.jetbrains.com/pycharm/download/ and click
the DOWNLOAD button under the Community Section.

Download PyCharm

Windows macOS Linux
Professional Community
Full-featured IDE Lightweight IDE
for Python & Web for Python & Scientific
development development
)
Free trial Free, open-source

2) Double click the downloaded .exe file to start the installation process and click Next

PyCharm Community Edition Setup — X

Welcome to PyCharm Community
Edition Setup

Setup will guide you through the installation of PyCharm
Community Edition.

It is recommended that you dlose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

-\

https://www.jetbrains.com/pycharm/download/

3) Modify the installation location if needed and click Next

PyCharm Community Edition Setup — x

Choose Install Location
Choose the folder in which to install PyCharm Community Edition.

Setup will install PyCharm Community Edition in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Space required: 511.9MB
Space available: 62.7GB \

< Back Neﬁ:» . Cancel

4) Choose 64-bit launcher and click Next

PyCharm Community Edition Setup

Installation Options
Configure your PyCharm Community Edition installation

Create Shortcut
[]32-bitlauncher [] 64-bit launcher

Create Assodations
Ol.py

3

[[] Download and install JRE x86 by JetBrains

< Back Next > _ Cancel

5) Modify the default start menu folder if needed and click Install

E PyCharm Community Edition Setup

shortcuts.

Choose Start Menu Folder
Choose a Start Menu folder for the PyCharm Community Edition

can enter a name to create a new folder,

the Start Menu folder in which you would like to create the program's shortcuts. You

G >

Accessibility

Accessories

Administrative Tools
Backup and Sync from Google
CCleaner

Clover

CrystalDiskMark5s

Flock

Maintenance

Microsoft Office 2016 Tools
Notepad++

NVIDIA Corporation

< Back IR;]EEI

6) Wait for the installation process to finish and click Finish

PyCharm Community Edition Setup

Edition Setup

computer.
Click Finish to dose Setup.

[C]Run PyCharm Community Edition

s

Completing PyCharm Community

PyCharm Community Edition has been installed on your

T [

10

2.3 Download Source Code

1) After registration and joining in a team, please go to the website
https://competition.huaweicloud.com/information/1000041743/introduction and download zip

package of source code: “WSC Case Competition.zip”

2) Decompose zip package to folder “WSC Case Competition”
3) Source code structure of ‘WSC Case Competition’

» WSC Case Competition v
=)
.idea
animation
config pack
handler
o)«
interface
job_generator
load
log
e

standard
transportation
xml_parser

| | README.md

Input folder: includes scenario files (XML files)
Output folder: includes output file (JSON file)
Run folder: includes run files (Python files)

2.4 Add Python Interpreter

1) Open PyCharm, confirm user agreement and click Continue

11

https://competition.huaweicloud.com/information/1000041743/introduction

® PyCharm User Agreement

JETBRAINS COMMUNITY EDITION
TERMS

IMPORTANT! READ CAREFULLY:

THESE TERMS APPLY TO THE JETBRAINS INTEGRATED DEVELOPMENT
ENVIRONMENT TOOLS CALLED 'INTELLD IDEA COMMUNITY EDITION AND
‘PYCHARM COMMUNITY EDITION’ (SUCH TOOLS, "COMMUNITY EDITION"
PRODUCTS) WHICH CONSIST OF 1) OPEN SOURCE SOFTWARE SUBJECT TO THE
APACHE 2.0 LICENSE (AVAILABLE HERE: https://www.apache.org/licenses/LICENSE-
2.0), AND 2) JETBRAINS PROPRIETARY SOFTWARE PLUGINS PROVIDED IN FREE-
OF-CHARGE VERSIONS WHICH ARE SUBJECT TO TERMS DETAILED HERE: https:
//www jetbrains.com/legal/community-bundled-plugins.
"JetBrains” or “we” means JetBrains s.r.o.,, with its principal place of business at Na
\H:ebenech 111718/10, Prague, 14000, Czech Republic, registered in the

mmarrial Renicter maintained hyv tha Munirinal Court nf Pracnie Sectinn € File

| confirm that | have read and accept the terms of this User Agreement ‘

Exit Continue

2) Click either option of your choice

B Data Sharing

DATA SHARING

Help JetBrains improve its products by sending anonymous data about features and
plugins used, hardware and software configuration, statistics on types of files, number
of files per project, etc. Please note that this will not include personal data or any
sensitive information, such as source code, file names, etc. The data sent complies
with the JetBrains Privacy Policy.

Data sharing preferences apply to all installed JetBrains products.

You can always change this behavior in Settings | Appearance & Behavior | System
Settings | Data Sharing.

Don't Send Send Anonymous Statistics

3) Click Open, and open “WSC Case Competition” folder directly

12

Learn PyCharm

4) Click File and click Settings

File | Edit

I Project

@ Commit

Structure

Welcome to PyCharm

Take a quick onboarding tour

h File Ctrl+Alt+Shift+

Jucﬁon

a short introduction of your project. Let this section explain the objectives or the motiv|

Ctr\+A\t+S> 19 Started

> :
3 users through getting your code up and running on their own system. In this section
Ctrl+S

Ctrl+Alt+Y on process
y dependencies
leases

‘ences

and Test

ribe and show how to build your code and run the tests.

Contribute

@ Pyth:

13

5) Open Project tab and click Python Interpreter, and click Add Interpreter

Project: WSC Case Competition > Python Interpreter

Appearance & Behavior

on Inte
Keymap

Editor
Plugins
Version Control
Project: WSC Case Competition
Python Interpri
P tructure
Build, Execution, Deployment
Languages & Frameworks
Tools

Advanced Settings

6) Choose Virtualenv Environment, click OK

¢ Virtualenv Environment

da Er

Cancel

14

7) Click OK

Appearance & Behavior
Keymap
Editor
Plugins
Version Control
Project: WSC Case Competition
Python Interpreter
Structure
Build, Execution, Deployment
Languages & Frameworks

Tools

Advanced Settings

Project: WSC Case Competition

Python Interpreter

Apply

15

2.5 Add Python Packages Installation

1) Click File and click Settings

2)

I Project

Alt+Insert
ch File Ctrl+Alt+Shift+Insert

Jucﬁon

t

a short introduction of your project. Let this section explain the objectives or the motiv

Ctr\+A\t+S> g Started

? 3 users through getting your code up and running on their own system. In this section
Ctrl+S
Ctrl+Alt+Y on process
1 dependencies
leases

> 'ences
>

) and Test

ribe and show how to build your code and run the tests.

Structure

Contribute

Open Project tab and click Python Interpreter

Project: WSC Case Competition > Python Interpreter

> Appearance & Behavior
n Interpreter: | @
Keymap
> Editor
Plugins
Version Latest version
> ' /ersion Control . a 2221
v Project WSC Car : Competition
Python Interpreter
Project Structure

> Build, Execution, Deployment

> Languages & Frameworks

> Tools

Advanced Settings

16

3) Click + button

Project: WSC Case Competition > Python Interpreter

Appearance & Behavior

thon Int
Keymap

Editor

Plugins

Version Control

Project: WSC Case Competition

Python Interpreter

Build, Execution, Deployment
Languages & Frameworks
Tools

Advanced Settings

4) Search for the packages to be installed

num
num
num
num
num
num
num
num
num
num
num
numpy
num

numpy

numpy

num

num

NumPy is undamental p

Version

Travis E. Oliphant et al.

cage for array computing

17

5) Click Install Package button to start the installation process

NumPYy is the fundamental pacl computing with Python.
Version
1

Author

Travis E. Oliphant et al.

6) For this competition, repeat step 4 - step 5 to install ‘numpy’, pandas’, ‘sortedcontainers’
and ’pygame’ correspondingly
7) Click OK to finish all packages installation

Project: WSC Case Competition > Python Interpreter

Appearance & Behavior Bl [
Keymap
Editor
Plugins
Version Control
Project: WSC Case Competition
Python Interpreter
Bl Structure
Build, Execution, Deployment ST-G R
Languages & Frameworks

Tools

Advanced Settings

18

Chapter 3
Data in the Discrete-Event Simulation Model
3.1 Entities

There are five entities involved in this model, Square Unit, Transportation Network, Job, Vehicle and Grid
Mover System. Each is represented by a class and has its own set of attributes. As shown in Figure 1, the
grid map, which is formed by a network of lines, is the Transportation Network. The individual square in
the grid is the Square Unit, which represents specific positions in the Transportation Network. A Job is a
task to move a Job item in the warehouse from the picking position to the delivery position. A Job item is
generated at its picking position and eventually moved to delivery position by a Vehicle. Vehicles move
along the adjacent Square Units vertically or horizontally to pick or deliver Job items or park themselves at
the park positions if no Job is assigned to them. The system which manages all the above entities is called
Grid Mover System. An Entity Relationship Diagram (ERD) is shown in Figure 2 to give an overview of

the relationships among the entities and the attributes associated with them.

Figure 5 - An Illustration of Entities

19

Transportation Network # 6 = Grid Mover System
TransportationNetworkld <str= {n} e PK | GridMoverSystemld <str= {m} H—
. : load_duration: float
start_point: Tuple<int, int= = Vehicle 5
unload_duration: float
dimension: Tuple<int, int= PK | Vehicleld <str= {j}
transportation_network: Transportation Network
obstacle_list: List <Tuple<int, int== pace: float (s per Square Unit)
2 static_route: List<Tuple<int, int=>
park_position: Tuple<int, int=
= S Unit i 4
quare tni start_position: Tuple<int, int=
PK | sguare_unit_index: Tuple<int, int= {i} pP——
dynamic_route: List<Tuple<int, int==
row_index: int = Job
. . reservation: List<Tuple<int, int=>
column_index: int PK | Jobld <str= {k} po—
is obstacle: bool reservation_pending: List=Tuple<int, int==> delivery_position: Tuple<int, int>
ickin osition: Tuple<int, int=
vehicle via® int 1 request_time: datetime . 9p .
3 arrival_time: datetime
occupied_vehicle: Vehicle reservation_to_release: List<Tuple<int, int=>
job_list: List<Job>
status: string ("idle”, "pick", "deliver”, "park”)

PK: short term for primary key, which uniguely identifies the entity object. Inside the curly bracket is the alphabetic index of the primary key.
Static attribute: entity attributes that do not change overtime. Static attributes are owned by the class itself.
Dynamic attribute (italic): entity attributes that change overtime. Dynamic attributes are stored in DataFrames. For DataFrame structure, see section 3.2

Entity Relations:
1. A Square Unit can be occupied by at most one and at least zero Vehicle.
AWehicle can reserve multiple Square Units, and occupies at least one Square Unit.
2. A Square Unit belongs to one Transportation Network.
A Transportation network contains at least one Square Unit
3. A Vehicle can be assigned with no jobs or multiple job.
A Job can be assigned to at most one Vehicle .
4. A Job generated belongs to at most one Grid Mover System.
A Grid Mover System contains zero or multiple jobs.
. A Vehicle belongs to one Grid Mover System.
A Grid Mover System contains at least one Vehicle
6. A Grid Mover System contains one Transportation Network
A Transportation Network belongs one Grid Mover System

(=)

Figure 6 - Entity Relationship Diagram (ERD)

The details about the entity attributes and their definitions are explained below.

Table 1 lists the attributes of Square Units. One thing to note is that some of the Square Units can be
obstacles and do not allow Vehicles to pass through. Such obstacles will be specified in the model input

(see section 3.5 for model input).

20

Table 1 - Attributes of Square Unit

Attribute Name Type Description

row_index int The row number of the Square Unit in the Transportation Network,
starting from 0.

column_index int The column number of the Square Unit in the Transportation Network,

starting from O

square_unit index

Tuple<int, int>

The primary key of a Square Unit.

The row and column number of the Square Unit in the Transportation
Network. The first value is row_index, and the second value is
column_index, starting from (0,0).

is_obstacle bool Indicating if the Square Unit is an obstacle. If true, the Square Unit
cannot be requested or reserved, i.e. no Vehicle can pass through this
Square Unit.

vehicle via int The total number of Vehicles that have passed through this Square Unit
in the current simulation run.

occupied vehicle [V/ehicle The Vehicle that successfully requests or parks at this Square Unit.

Table 2 summarizes the attributes of Transportation Network which are all static attributes and will be
specified in the model input too.

Table 2 - Attributes of Transportation Network

Attribute Name

Type

Description

id

str

The primary key of Transportation Network in the form of
“TransportationNetwork#” + index

start point

Tuple<int, int>

The start point of the Transportation Network.
The first value is row_index, the second value is column_index.

dimension

Tuple<int, int>

The dimension of the Transportation Network. The first value is the
number of rows, the second value is the number of columns.

obstacle list

List<Tuple<int,
int>>

The list of square unit_index Whose respective Square Unit does not
allow Vehicles to pass through.

Table 3 gives information on the attributes of Jobs, which are all static attributes. Jobs arrive at the

system following an exponential distribution, and they specify the picking positions and delivery

positions of the Job items.

21

Table 3 - Attributes of Job

Attribute Name

Type

Description

id

str

The primary key of a Job instance in the form of “Job#” + index

delivery position

Tuple<int, int>

The square_unit_index Of the Square Unit where a Vehicle delivers
the Job item.

picking position

Tuple<int, int>

The square unit_index Of the Square Unit where a Vehicle picks the
Job item.

arrival time

datetime

The time when the Job arrives at the Grid Mover System.

Table 4 summarizes the attributes of VVehicles.

Table 4 - Attributes of Vehicle

Attribute Name Type Description

id str The primary key of a Vehicle instance in the form of
“Vehicle#” + index

pace float The time in seconds that the Vehicle requires to pass one

Square Unit distance.
The Unit is [seconds per Square Unit]

static_route

List<Tuple<int,
int>>

The list of square unit_index Of the Square Units in the
full route of the Vehicle from one point to another.

park position

Tuple<int, int>

The square unit_index Of the Square Unit where the
Vehicle parks.

start position

Tuple<int, int>

The square unit_index Of the Square Unit that the Vehicle
occupies before traveling through the partial route.

dynamic route

List<Tuple<int,
int>>

The list of square_unit_index Of the Square Units in
the static_route that the Vehicle has yet to reserve and
travel.

reservation

List<Tuple<int,
int>>

List of square unit index Of the Square Units that the
Vehicle requests successfully and has not started to pass
through.

reservation pending

List<Tuple<int,
int>>

List of square unit_index Of the Square Units that the
Vehicle cannot reserve successfully because they are
reserved or occupied by other Vehicles

request time

datetime

The time at which the Vehicle requests its partial route but
did not succeed.

22

Partial route complete time | datetime The time at which the Vehicle completes its current partial
route.

reservation to_release List<Tuple<int, | List of square_unit_index 0f the Square Units that the
int>> Vehicle reserves successfully and already starts to pass
through.

Jjob_list List<Job> The list of Job objects assigned to the Vehicle.

status str A Vehicle has four statuses: idle, pick, deliver, park

pick: When the Vehicle is traveling to the Job’s picking
position

deliver: When the Vehicle is traveling to the Job’s delivery
position

park: When the Vehicle is traveling to the park position.
idle: When the Vehicle parks at the park position or just
finish a job.

3.2 DataFrame

An entity’s dynamic attributes are stored in DataFrames. There are three DataFrames in the model:

vehicle_ df, grid df and available job df.

3.2.1 vehicle_df

vehicle df contains dynamic attributes of each Vehicle instance, matched by its "Vehicleld". Table 5
illustrates an example of the data entries in venicie dr in a scenario with 6 Vehicles. The columns are
“Vehicleld™ and the names of the dynamic attributes, and each row value is associated with one Vehicle

instance. To see definitions on each column, please see section 3.1 on entity attribute definitions.

Table 5 - Illustration of vehicle_df

Vehicle | Vehicleld St_a_rt DynamicRoute [Reservation Reserv_atlon Rec_]uest PartlaIRoqte RESINEUEmE JobList | Status
Position Pending Time CompleteTime Release
i i [(1,2), (1,3), [(1,2), (1.3), [Job1, .
Vehicle [Vehiclel [(1,1) aa . a4 NaN NaN NaN NaN Job2] Pick
[(3,2), (3.3), 2022-06-
Vehicle |Vehicle2 |(3,1) (3.4). 2.4), (2,5), |NaN E(lzs‘g @5). |06 iggﬁoze-oe Effﬁ B3 |uoba) |peliver
1,5) ...] ' 10:47:21 o '
; ; [(2.3), (2,4), 2022-06-06 [(2.3), (2,4),
Vehicle [Vehicle3 [(2,2) @2.5)] NaN NaN NaN 10:57:2 @2.5)] NaN Park
Vehicle [Vehicle4 [(1,1) NaN NaN NaN NaN NaN NaN NaN Idle
Vehicle [Vehicle5 [(6,9) NaN NaN NaN NaN NaN NaN [Job5] Idle
Vehicle [Vehicle6 [(7,9) NaN NaN NaN NaN NaN NaN NaN Idle

23

3.2.2 grid_df

Similarly, gria dar contains dynamic attributes of each Square Unit instance, matched by its

“SquareUnitindex™. Table 6 illustrates an example of the data entries in gria as. The columns are

“SquareUnitindex™ and the names of the dynamic attributes, and each row value is associated with one

Square Unit instance.

Table 6 - Illustration of grid_df

SquareUnitindex IsObstacle VehicleVia OccupiedVehicle
(0,0 FALSE 3 Vehicle4
0,1) TRUE 0 NaN
0,2) FALSE 1 NaN

3.2.3 available_job_df

However, available job df is not a DataFrame for dynamic properties. Rather, it is a real time collection

on Job instances together with their relevant attributes, including “Jobld™ and “ArrivalTime", for the purpose

of job-vehicle deployment. These Jobs not only include those that have arrived at the system and never

been assigned to Vehicles, but also those that have already been assigned to Vehicles, but the Vehicles have

not started their ways to pick the Jobs. This is to allow the latter type of Jobs to be reassigned to other

Vehicles which may be of better choices at a different point in time. The Deployment decision interface

module would be explained later in section 3.6.1. Table 7 illustrates an example of the data entries in

available job df. The columns are “Jobld™ and “ArrivalTime", and each row value is associated with one

Job instance.

Table 7 - Illustration of available_job_df

Job Jobld ArrivalTime
Job Job#1 23/05/2022 10:47:21
Job Job#2 23/05/2022 10:57:22

24

3.3 Activity-Based Description

= Job > Waiting for Vehicle LOKg Ol Relocate to Delivery Position
Vehicle

L* Unloading from
L T Vehicle

gt 4 | Traveling
if picking a Job . T
Mounting
5 s - {Full Route Complete

Full Route Incomplete
if going to park ﬁ
> Vehicle o Parking 5
Initially | 5 |

Figure 7 - Entity Flow Diagram (Activity-Based)
This section aims to provide an overview of the system storyline by describing the activities of different
entities. Each box is an activity associated with an entity, and each has an active or passive time delay.
Nonetheless, the simulation model is event-based, and Figure 7 only serves as illustration support. Please

see section 3.4 for the full event graph.

As illustrated in Figure 7, in the simulation, a Job arrives at the system at its picking position and first waits
for a Vehicle. After the assigned Vehicle reaches the Job’s picking position, the Job item will start loading
on the Vehicle and subsequently is transported to its delivery position where the Job item will be unloaded

from the Vehicle. From here, the Job is finished.

A typical Vehicle initially stays at its park position when the simulation starts until it is matched with a Job,
then it travels to the Job’s picking position to pick the Job item. After successfully loading, it travels to the
Job’s delivery position to deliver the Job item. After successfully unloading, if the Vehicle has another Job
to do, it will travel to pick up the next Job item; If the Vehicle has no more Jobs to do, the Vehicle will

travel back to the park position waiting for new Job tasks.

The traveling process is similar for a Vehicle to pick or deliver Job items or to park itself, as shown in
Figure 8. It first obtains its full route from its current position (start position) to the destination position
(end position), such as from its park position to the Job’s picking position during a picking task. Next, it

requests its first partial route, i.e., a section of the full route adjacent to the start position. If the Square Units

25

in the partial route are all unoccupied, the VVehicle will reserve the partial route successfully. However, if
the Vehicle fails to reserve the partial route, i.e., the Square Units in the partial route may be occupied by
other Vehicles at the time of requesting, the Vehicle will wait for the partial route to be released at its
current position. After the Vehicle reserves the partial route successfully, it starts to travel through the
current partial route. Meanwhile, at any moment during its travel, the Vehicle can request its next partial
route, i.e., a section of the full route that is adjacent to the current partial route. Eventually, the current
partial route is completed and released when the Vehicle reaches its end Square Unit. This process of
requesting, waiting for and traveling through the partial route will repeat until the full route is completed,

then it starts to load, unload or park based on different conditions.

To be noted, once deadlock happens, vehilces will stop travelling, leading to failure in finishing jobs.

¢ Ve

1. Find full route from start position to end position 2. Reserve first partial route.

3% 3%

3. Start to travel through the partial route and 4. Reach the end of the first partial route and release ;g
reserve the next partial route. passed Square Units.

3

5. Start to travel through the partial route. Since the
current partial route reaches the end position, there
is no need to reserve next partial route.

. start position
* end position

6. Reach the end of the partial route and release

passed Square Units. Now the full route is completed.

unfinished sections
of full route

reserved partial route

Figure 8 - An Illustration on Traveling Process

27

3.4 Event

This simulation uses 15 events to describe the above process. As shown in the event graph (EG) in Figure
9. Each event is scheduled with or without a parameter, whose primary key index is shown in the bracket
beside the event name. The primary key index can be found in the entity tables in section 3.1. Take “Job
Arrive(k)” as an example, job_arrive () event is scheduled with a parameter k, a Job object. Similarly,
route () event is scheduled with a parameter j, a Vehicle object. The arrow “ —> ” indicates the triggering
relationship in between events, i.e. an event is scheduled by another event. “ ¢x ~ ” indicates the condition
required to schedule the next event. For example, attempt to deploy () event schedules route () event
under condition c; and passes in parameter j. What’s more, “|| ” represents a time delay in scheduling the
next event. For example, start partial route() event starts at time t, and it schedules
partial route request () €ventattimet+ ti. In addition, in each event, certain system states or entity
attributes might be changed. The following sections will describe each event in detail, and the decision

conditions in the events are drawn in flow charts.

Partial Route
Request (j)

Release Partial
Route(j)

€2
Partial Route
First Request(j)

J forall

Attempt To Start
Partial Route(j)

(Allocate Partial Route’
for Pending Vehicle(j

Complete Partial
Route(j)

End Loading(j)

Start Loading(j)

- Attempt To Deploy

Job Armive(k)

End Unloading(j)

Start Unloading(j)

Start Parking(j)

cl: if the current Job of a Vehicle is changed or an Idle Vehicle is
assigned Jobs

c2: if current position is different from destination and route is found : o ; 5 :
c7: if no remaining route is left and vehicle's status is not park

and its current position is picking position

c3: if partial route request successfull
P q Y c8: if no remaining route is left and vehicle's status is not park

and its current position is delivery position
c4: if remaining route is not empty

c9: if no remaining route is left and vehicle's status is park
c5: if there is vehicle pending for square units c10: if vehicle's status is Idle and its current position is picking position
cll: if vehicle's status is Park and its current position is park position

c6: if pending vehicle next partial route is requested successfully
and it has finished current partial route

Figure 9 - Event Graph for the Model 28

34.1 job_arrive()

Attempt To Deploy

Figure 10 - EG for job_arrive()

In this event, generated Jobs arrive at the Grid Mover System. The Job interarrival time to is specified in
the model input, which is further elaborated in section 3.5. Next, the Job object, and its static attributes id

and arrival time arestoredin available job df.Intheend, attempt to deploy () eventisscheduled.

invoke
job_arrive()

Y

* Schedule
attempt_to deploy()

Figure 11 - Flow Chart for job_arrive()

3.4.2 attempt_to_deploy()

cl: if the current Job of a Vehicle is changed or an Idle Vehicle is
assigned Jobs

Job Arrive(k)

Start Parking(])

Figure 12 - EG for attempt_to_deploy()
In this event, each Job in available job_ df is attempted to be assigned to a Vehicle in the Grid Mover

System. This event is scheduled by job arrive() event Or start parking() event. This is to say,

whenever the system receives a new Job or sets free a Vehicle, the system will start to deploy all the
29

available Jobs in the system. If a Job is matched with a Vehicle successfully and the Vehicle is able to pick

the Job right away, route () event will be scheduled for that Vehicle to plan the route.

The Deployment interface module is called in this event, where users write their own deployment algorithm.

The return value from the interface, a11 vehicle to jobs dict, a dictionary mapping Vehicle object to

a list of assigned Job objects, will overwrite the "JobList™ in vehic1e df based on the following algorithm.

e Case 1: When the Vehicle "Status’ is "Park™ in vehicle df:

o

The Vehicle is moving to its park position and has 0 Jobs assigned to it currently ("JobList
is NaN), thus the Vehicle can directly take the new job allocation result, i.e. the list of Jobs
of this Vehicle in the dictionary will be added to its "JobList™ in vehicle df;

e Case 2: When the Vehicle "Status’ is "Idle” in vehicle df:

Case 2.1: The Vehicle is parked at its park position with a NaN “JobL.ist", the Vehicle can
directly add the new list of Jobs from the dictionary to its “JobList’. If the modified

“JobList™ is not NaN, route () event will be scheduled;

Case 2.2: The Vehicle is waiting to start its first partial route (already requested its first
partial route for the current Job but failed). Since the Vehicle has not started moving, the
Vehicle will replace its "JobList™ with the new list of Jobs from the dictionary. After that,
if the Vehicle is assigned with a new current Job, the previously requested partial route
becomes obsolete, thus the “DynamicRoute’, "ReservationPending’, "RequestTime™ will
reset to NaN and route () event will be scheduled to reroute the Vehicle based on its new

current Job.

e Case 3: When the Vehicle "Status™ is "Pick™ or "Deliver" in vehicle df:

The Vehicle has an ongoing Job and cannot change its ongoing Job. If the new list of Jobs
from the dictionary has the first Job different from the ongoing Job, an error will occur and
the simulation will stop. Otherwise, the Vehicle will replace its "JobList™ with the new list

of Jobs from the dictionary.

More information on the Deployment interface can be found in section 3.6.1.

30

invoke

attempt_to_deploy()

» Call user_algo() in the
Deployment interface to
return new Job allocation.

Coes Deployment interface
returns None?

« Call default_algo() in the
Deployment interface to
return new Job allocation.

Based on the new Job
aflocation, is the frist job from the resh
same as the Vehicle
ongoing Job?

Run error occurs and
simulation stops

Check Vehicle Status

Pick or Deliver

» the Vehicle directly take the
new list of Job allocation

» the Vehicle directly take the

new list of Job allocation i
|5 the Vehicle at

park position?

+ the Vehicle directly take
the new list of Job
allocation

» the Vehicle directly take
the new list of Job
allocation

s the Vehicle's ongoing
Job changed?

Is the Vehicle's new
Joblist empty?

« Delete the Vehicle's
previous partial route
request

» schedule route()

Figure 13 — Flow Chart for attempt_to_deploy()

31

3.4.3 route()

Partial Route
First Request(j)

End Loadingj)
Start Loading(j)

End Unloading(j)
c2: if current position is different from destination and route is found
c10: if vehicle's status is Idle and its current position is picking position
Start Parking(j)
cl11: if vehicle's status is Park and its current position is park position

Figure 14 - EG for route()

Job Arrive(k)

Attempt To Deploy

This event allocates a route for the Vehicle from its start position to end position, changes its “Status’
accordingly, and schedules partial route first request(), start loading(), Of start parking()
events under different conditions. The event is first scheduled by attempt to deploy(),
end unloading() OF end loading() event. After that, the Vehicles passed in as parameters are first
categorized by their “Status’ to help identify their end positions and schedule the next event based on the

following algorithm.

e Case 1. When the Vehicle “Status™ is "ldle": The Vehicle could be just ending unloading the
previous Job item and heading towards the next assigned Job, or could just be assigned a new Job
at its park position, thus it is going to pick the Job.

o Case 1.1: The Vehicle’s current position happens to be its first Job’s picking position. It
can load the Job item right away, thus start 1oading () event is scheduled and the Job is

deleted from available job df;

o Case 1.2: The Vehicle’s current position is not its first Job picking position, a route needs
to be generated to the picking position, hence Route interface is called and

partial route first request() eventisscheduled.

e Case 2: When the Vehicle "Status’ is "Deliver": The Vehicle just ended loading the previous Job,

thus is going to deliver the Job:

o a route needs to be generated to the delivery position, thus Route interface is called and

partial route first request() eventisscheduled.

32

e Case 3: When the Vehicle “Status’ is "Park": The Vehicle just ended unloading a Job and has no
Job assigned to it currently, thus is going to be parked:

o Case 3.1: The Vehicle’s current position happens to be its park position, it is parked right

away, thus start_parking () event is scheduled.

o Case 3.2: The Vehicle’s current position is not its park position, a route needs to be
generated to the park position, thus Route interface is called and

partial route first request() event is scheduled.

The Route interface module is called in this event, where users write their own route algorithm. The return
value from the interface, route 1ist, will be the generated route in this event and will be used to update

"DynamicRoute” in __venicle df. More information on the route interface can be found in section 3.6.2.

invoke
route()

« Change Vehicle Status to Pick

« Delete current job form avaliable job
dataframe

» schedule start_loading()

Is the Vehicle at its first
ob’s picking posifion now,

« schedule
start_parking()

s the Vehicle at its park
position now?

Check Vehicle Status

Deliver

» Call user_algo() in Route interface fo
generate full route.

Does Route interface

returns None? Route interface to generate

» Call default_algo() in the
full route.

No

s the returned route_list
sequential?

Is route found?

» Raise Exceplion » Raize Exception

= schedule
partial_route_first_request()

Figure 15 - Flow Chart for route()

33

3.4.4 partial_route_first_request()

c3: if partial route request successfully

o Attempt To Start

Partial Route(j)
Start Loading(j)

Atternpt To Deploy

End Unloading(j)
Start Parking(j)

Figure 16 - EG for partial_route_first_request()

This event requests the first partial route of the Vehicle, and is only scheduled by route () event. At the
start, the Request interface module is called in this event, where users write their own request algorithm.
The return value from the interface, partial route, Will be the partial route to be requested. The request

can be either successful or failed, which will affect the next event scheduled. The conditions are as follows:
e Case 1: Request Successful

o If all the Square Units in the requested partial route have no vehicle reservation, i.e. the
“OccupiedVehicle™ in gria_daf is NaN, then the Vehicle will reserve all the Square Units
in the partial route, and the partial route is considered successfully requested. Subsequently,
the “OccupiedVehicle® for these Square Units are updated into this Vehicle in grid_ar,

and attempt to start partial route () eventisscheduled.
e Case 2: Request Failed

o If any of the Square Units in the partial route is already reserved by another Vehicle, the
Vehicle will fail to request the partial route, so the partial route is sent to the Vehicle's
‘ReservationPending’, and the request time is recorded in ‘RequestTime’ column in

vehicle df.

34

invoke
partial_route_first_request()

« Call user_algo() in Request interface
to generate partial route

» Call default_algo() in the
Request interface to
generate partial route.

Does Request interface
returns None?

« the Vehicle waits for the partial
route to be released

« record the RequestTime of the
Vehicle

Is the reguest successful?

« The Vehicle occupies all the Sqguare
Units in the partial route

« schedule
attempt_to_start_partial_route()

Figure 17 - Flow Chart for partial_route_first_request()

35

3.45 attempt_to_start_partial_route()

Start Partial Route(j)

c3: if partial route request successfully

Partial Route

G2
First Request(j)

Allocate Partial Route!
for Pending Vehicle(j

Complete Partial
Route(j)

End Loading(j)

Start Loading(j)

Attempt To Deploy

Job Arrive(k)

End Unloading(j)

Start Parking(j)

Figure 18 - EG for attempt_to_start_partial_route()

This event checks if the Vehicle can start moving along its partial route, i.e. to schedule

start partial route() event. To achieve this, the Vehicle must make sure that it has successfully

requested the partial route. Otherwise, the Vehicle cannot start traveling. Events

partial route first request(), complete partial route() and allocate partial route for

_pending vehicle () Can schedule attempt to start partial route() event.

invoke
attempt_to_start_partial_route():

|s the partial route
successfully requested?

» Schedule
start_partial_route()

Figure 19 - Flow Chart for attempt_to_start_partial_route()

36

3.4.6 start_partial_route()
tq ta
o : .
Request §) Release Partial
Route(j)

Partial Route c4: if remaining route is not empty
First Request(j)
Attempt To Start
’ Partial Rout
aral Route() C Allocate Partial Route
& for Pending Vehicle(j),
End Loading(j) Comg‘\]e‘:teez)amal
Start Loading(j)
End Unloading(j)
Start Parking(j)

Figure 20 - EG for start_partial_route()

to

C
1 1

Attempt To Depl
Job Arrive(k)

In this event, Vehicle starts to travel its partial route. It first adds the current partial route to
"ReservationToRelease™ and deletes it from "Reservation” in vehicle df. After some random time t, before
the partial route is finished, the Vehicle requests for its next partial route, i.e. schedule
partial route request() event, where 'Reservation’ in vehicle df will be further updated. After a
fixed period t,, the partial route is finished (since the distance and vehicle pace are fixed), hence

release partial route () eventis scheduled.

One thing to take note of is that, at the start of this event, if Vehicle "Status™ is “Idle”, it means the Vehicle
just ended unloading the previous Job item and heading towards the next assigned Job, or could just be
assigned a new Job at its park position, therefore it is going to pick the Job. Hence, the “Status™ will be

changed to “Pick” and its current Job will be deleted from available job df.

invoke
start_partial_route(}

Is the Vehicle status "ldle"? » Change the Vehicle status to "Pickj

» After random time t1 (0 < t4 <Z t3), schedule]
partial_route request() J<

» After time tp, schedule release_partial_route() event

Figure 21 - Flow Chart for start_partial_route()
37

3.4.7 partial_route_request()

2
© 1]
Start Partial Route(j) Release Partial
Route(j)
Partial Route
First Request(j)
Attempt To Start
7 Partial Route(j) Allocate Partial
Route for
Pending Vehicle(j)

. Complete Partial
End Loading(j) Dngfu?e(j; a
Start Loading(j)

End Unloading(j)
1 Start Parking(j)

Figure 22 - EG for partial_route_request()

€1

fo
@ Attempt To Deploy

This event requests the partial route of the Vehicle, except for the first partial route and is scheduled by
start partial route() event only. The logic in this event is similar to
partial route first request (), except that it does not schedule any event. The Request interface
module is called in this event, where users write their own request algorithm. The return value from the
interface, partial route, Will be the partial route to be requested. The request can be either successful or

failed, which will affect the next event scheduled. The conditions are as follows:
e Case 1: Request Successful

o If all the Square Units in the requested partial route have no vehicle reservation, i.e. the
“OccupiedVehicle™ in gria_daf is NaN, then the Vehicle will reserve all the Square Units
in the partial routes, and the partial route is considered successfully requested.
Subsequently, the "OccupiedVehicle™ for these Square Units is updated into this VVehicle in

grid df.
e Case 2: Request Failed

o If any of the Square Units in the partial route is already reserved by another Vehicle, the
Vehicle will fail to request the partial route, so the partial route is sent to the Vehicle's
"ReservationPending™ column, and the request time is recorded in ‘RequestTime’ column

in vehicle df.

38

invoke
partial_route_request()

« Call user_algo() in Request interface
to generate pariial route

» Call default_algo() in the
Request interface fo
generate partial route.

Does Request interface
returns Mone?

s the Vehicle waits for the partial
route to be released

» record the RequesiTime of the
Vehicle

Is the request successful?

« The Vehicle occupies all the Sguare
Units in the partial route

Figure 23 - Flow Chart for partial_route_request()

3.4.8 release_partial_route()

c5: if there is vehicle pending for square units

Partial Route
Regquest (j)

€2

Partial Route
First Requesi(j)

j forall

fAllocate Partial Route)
for Pending Vehicle(j),

Attempt To Start
Partial Route(j)

- Complete Partial
End Loading(j) M Routel)

Attempt To Deploy Start Loading(j)

Job Arrive(k)

End Unloading(j)

Start Parking(j)

Figure 24 - EG for release_partial_route()

39

This event indicates the Vehicle has reached the last Square Unit of the partial route. It is scheduled by
start partial route() event and releases the finished partial route. Also, it updates Vehicle
“StartPosition”, schedules complete partial route() event and allocate partial route for

_pending vehicle () e€vent under certain conditions.

In detail, it first removes the finished partial route section from the Vehicle’s ‘DynamicRoute’ in
vehicle df, and sets the Square Unit that the Vehicle is currently at as the new “StartPosition™ for the
Vehicle’s next partial route. Next, it releases the Square Units in the Vehicle’s "ReservationToRelease™ by
setting the "OccupiedVehicle™ in grid af to NaN. However, the current "StartPosition” is excluded in
releasing as it is still occupied by the Vehicle, but the previous "StartPosition™ will be released. In addition,
“VehicleVia® in grida_daf for the released Square Units are increased by one, since one more Vehicle has
passed through the Square Units. After that, the system checks if there are any Vehicles in the system
pending to reserve a partial route, i.e. failed in the partial route request before. If true,
allocate partial route for pending vehicle() event will be scheduled. In the end,
complete partial route () event is scheduled to indicate the completion of the partial route and data

update.

invoke
release_partial_route()

A

» Release the Square Units that are
passed through by the Vehicle

|= there Vehicles Mo
pending for requested partia

oute in the system?

s schedule
alllocate_partial_route_for_pending_vehicle()

l

« update Vehicle start position

h

« schedule complete_partial_route()

Figure 25 - Flow Chart for release_partial_route()

40

3.4.9 allocate_partial_route_for_pending_vehicle()

Release Partial
Route(j)

Complete Partial
Route(j)

c6: if pending vehicle next partial route is requested successfully
and it has finished current partial route

Attempt To Deploy Start Loading(j)

Start Parking(j)

Figure 26 - EG for allocate_partial_route_for_pending_vehicle()

This event allocates released Square Units to pending Vehicles, and schedules
attempt to start partial route() event if the Vehicle’s requested partial route is successfully
allocated and the Vehicle has finished the current traveling partial route. The event is scheduled by
release partial route () €vent, in which some Square Units are released, thus making way for the
pending Vehicles. Sorting all the Vehicles that are pending for their partial routes in the system
(‘ReservationPending is not NaN) according to "RequestTime" in ascending order, the system allocates
partial routes to pending Vehicles from the oldest to the most recent one by one. As long as the Vehicle’s
requested partial route in "ReservationPending” becomes available now ("OccupiedVehicle™ of the Square
Units are NaN), the partial route will be allocated to the Vehicle. Hence, the data in "ReservationPending
will be moved to "Reservation™ and the Vehicle will be set as the “OccupiedVehicle™ for these Square Units.
After that, the system proceeds to the next pending Vehicle. For all pending Vehicles that have been
successfully allocated with their requested partial routes, and have completed the current traveling partial

routes, attempt to start partial route () event will be scheduled for them.

41

invoke
alllocate_partial_route_for_pending_vehicle()

k.

» Sort all the Vehicles that are pending for their pariial
routes according to RequestTime in a pending list.
« Find the oldest Vehicle in the list

Is the requested partial route for
e pending Vehicle available now?,

A

» Allocate the partial route to the
Vehicle

« Remove the Vehicle from the
pending list

» Find the next oldest pending Vehicle

as the Vehicle completed
he current partial route?

« schedule
attempt_to_start_partial_route()

Yes
Is there still Vehicles

in the pending list

Figure 27 - Flow Chart for allocate_partial_route_for_pending_vehicle()

42

3.4.10 complete_partial_route()

Release Partial
Route(j)

Allocate Partial Route)
for Pending Vehicle(j)

c4: if remaining route is not empty

c7: if no remaining
and its curren

¢8: if no remainir
and its current [

[i]
Figure 28 - EG for complete_partial_route()

This event indicates the completion of the current partial route and records the completion time to
“PartialRouteCompleteTime™ in venicle df. It is scheduled by release partial route() event only,
and it schedules attempt to start partial route(), start parking(), start loading(),

start unloading () based on different conditions, as described in the following:
e Case 1: If the Vehicle has not completed its full route, i.e. its "DynamicRoute" is not NaN

0 attempt to start partial route() event will be scheduled to try to start its next

partial route.

o Case 2: If it completes its full route, meaning it has already reached its destination position to pick

or deliver a Job, or to park itself, the next event will be scheduled based on conditions.

o Case 2.1: When the Vehicle’s “Status™ is “Park”, the Vehicle is going to park, thus

start_parking () event will be scheduled.

o Case 2.2: When the Vehicle’s "Status™ is “Pick” or “Deliver”, the Vehicle is picking or

delivering a Job

= Case 2.1: If the Vehicle is at current Job's picking position, it reaches the

destination to pick the Job, thus start 1ocading () event will be scheduled.

» Case 2.2: If the Vehicle is at current Job's delivery position, it reaches the

destination to deliver the Job, thus start unloading () event will be scheduled.

43

invoke
complete_partial_route()

as the Vehicle
completed its
full route?

« Schedule
attempt_to_start_partial_route()

unload

[« Schedule start_parking()

at does the Vehicl
need to do next?

« Schedule stari_unloading()]

[« Schedule start_luading{)]

Figure 29 - Flow Chart for complete_partial_route()

44

3.4.11 start_loading()

Partial Route
Request {j)

Release Partial
Route(j)

Start Partial Route(j)

c2

Partial Route
First Request(j)

i forall

Allocate Partial
Route for
Pending Vehicle(j)

Atternpt To Start
Partial Route(j)

Complete Partial
Route(j)

End Loading(j)

Attempt To Deploy

Job Arrive(k)

End Unloading(j)

Start Unloading(j)

Start Parking(j)

Figure 30 - EG for start_loading()

This event starts loading the Job item onto the Vehicle and clears "PartialRouteCompleteTime'. After a
fixed period of loading duration t., which is specified in the model input, end_10ading () eventis scheduled.

invoke
start_loading()

[» After time t3, schedule end_loading()]

Figure 31 - Flow Chart for start_loading()

45

3.4.12 end_loading()

Release Partial
Route(j)

j forall

Allocate Partial
Route for
Pending Vehicle(j)

Attempt To Start
Partial Route(j)

B

Attempt To Deploy

k+1

L]
Figure 32 - EG for end_loading()

This event finishes loading the Job item onto the Vehicle. Since the Job item is already picked up, the

Vehicle is going to deliver the Job. The Vehicle ‘Status’ is changed to “Deliver” and route () event is

scheduled to find the route to its delivery position.

invoke
end_loading()

e Change Vehicle status to "deliver"
« Schedule route()

Figure 33 - Flow Chart for end_loading()

46

3.4.13 start_unloading()

Partial Route
Request (j)

Release Partial
Route(f)

Start Partial Route(j)

C2

Partial Route
First Request(j) J forall
Allocate Partial
Route for
Panding Vehicle(j)

Atternpt To Start
Partial Routa(j)

Complets Partial
Route(j)

End Loading(j)

Atternpt To Deploy

Job Arrive(k)

End Unloading(j)

Start Parking(])

Figure 34 - EG for start_unloading()

This event starts unloading the Job item from the Vehicle and clears "PartialRouteCompleteTime". After a

fixed period of unloading duration t., which is specified in the model input, end unloading () event is

scheduled.

invoke
start_unloading()

[* After time t4, schedule end_unloading()]

Figure 35 - Flow Chart for start_unloading()

47

3.4.14 end_unloading()

1y 2

Partial Route
Request (j)

Release Partial
Route(j)

C2

Partial Route
First Request(j)

| forall

Allocate Partial Route’
for Pending Vehicle(j)

y Attempt To Start
Partial Route(j)

Complete Partial
Routeij)

End Loading(j)

7 Attempt To Deploy

Job Arrive(k)

Start Unloading(j)

Start Parking(j)

Figure 36 - EG for end_unloading()

This event finishes unloading the Job item from the Vehicle, and the Job is considered finished, thus is
removed from the Vehicle’s ‘JobList™. If the Vehicle still has Jobs in its “JobList’, the Vehicle “Status™ will
be changed to “Idle” and route () event will be scheduled to find the route to the picking position of the
next Job. The reason for it being idle is that, as long as it has not started traveling on the route, the Vehicle’s
“JobList™ is subject to change, depending on the deployment result. However, if the Vehicle has a NaN
“JobList’, meaning it has no Job allocated, its “Status™ will be turned into “Park” and route () event will be

scheduled to find the route to its park position.

invoke
end_unloading()

Does the Vehicle
still have assigned Jobs

currently?

+ Change Vehicle status to "Park”
+ Schedule route()

+ Change Vehicle status to "ldle"
+ Schedule route()

Figure 37 - Flow Chart for end_unloading()

48

3.4.15 start_parking()

Partial Route
Request (j)

Release Partial
Route(j)

c2

Partial Route
First Request(j)

j forall

Allocate Partial Route!
for Pending Vehicle(j

Attempt To Start
Partial Route(j)

Complete Partial
Route(j)

End Loadingi])

Start Loading(j)

Attempt To Deploy

Job Arrive(k)

End Unloading(j)

Start Unloading(j) |5

Figure 38 - EG for start_parking()

In this event, the Vehicle is parked at the park position, occupies the Square Unit. Therefore, it becomes
the "OccupiedVehicle' of the park position Square Unit and its ‘Status” is changed from “Park” to “Idle”,
which means it is ready for new Job allocation or starting to handle new Job. Besides,

“PartialRouteCompletTime™ will be deleted. In the end, attempt to deploy () eventis scheduled.

invoke
start_parking()

« Change Vehicle status to "ldle"
» Schedule attempt_to_deploy()

Figure 39 - Flow Chart for start_parking()

49

3.5 Input

In the input file, some static attributes for the Grid Mover System are specified, including Transportation

Network id, start point, dimension, obstacle list and available vehicle resources, including the

Vehicle’s id, and park position.

Refer to Figure 40 for the attributes that are specified in the model input. They are highlighted in red in the

ERD and the attribute definitions can be found in Table 2 and Table 4.

Transportation Network

PK

TransportationNetworkld =<str= {n}

start_point: Tuple<int, int=

dimension: Tuple<int, int=

obstacle_list: List <Tuple<int, int==

Square Unit

PK | square_unit_index: Tuple<int, int= {i}

row_index: int

column_index: int

is_obstacle: bool

vehicle_via: int

occupied_vehicle. Vehicle

Vehicle

PK

Vehicleld <str= {j}

pace: float (s per Square Unit)
static_route: List<Tuple<int, int=>

park_position: Tuple<int, int>

dynamic_route: List=Tuple<int, int=>

reservation: List<Tuple<int, inf=>

reservation_pending: List<Tuple<int, inf=>

request_time. datetime

reservation_to_release. List<Tuple<int, inf==
Job_list: List<Job=

status: string ("idle”, "pick”, "deliver”, "park”)

Figure 40 - Model Input Data in ERD

Grid Mover System

PK

GridiMoverSystemld <str= {m}

load_duration: float
unload_duration: float

transportation_network: Transportation Network

Job

PK | Jobld <str> {k}

delivery_position: Tuple<int, int>
picking_position: Tuple<int, int>

arrival_time: datetime

Other model inputs are associated with Job generations. The Jobs arrive at the Grid Mover System with an

inter-arrival time of exponential distribution, and the rate parameter A is specified in the input. Each Square

Unit is associated with a Picking Rate and a Delivery Rate. The Picking Rate and Delivery Rate specify the

comparative frequency at which a Square Unit becomes a Job’s picking position and delivery position, with

default value 1. Some Square Units are more popular picking positions while some are more popular

delivery positions, or the other way around. Their Square Unit Indexes and the special Picking Rates and

Delivery Rates are specified in the input. The input variables associated with Job generations are listed in

Table 8. In the end, the assignment of picking and delivery locations to the arrived Jobs is calculated using

the input with the Alias method.

50

Table 8 - Model Input Data not in ERD

Property Name Type Description

Lambda int The rate parameter of the exponential distribution of the Job inter-
arrival time.

DeliveryDefaultRate | float The default comparative frequency at which the Square Unit becomes
a Job’s delivery position.

PickingDefaultRate | float The default comparative frequency at which the Square Unit becomes
a Job’s picking position.

SquareUnitIndex Tuple<int, int> | The square_unit_index 0f the Square Unit which has a special
Picking Rate and/or Delivery Rate.

DeliveryRate float The special comparative frequency at which the Square Unit becomes
a Job’s delivery position.

PickingRate float The special comparative frequency at which the Square Unit becomes

a Job’s picking position.

51

3.6 Interface

There are three interface modules connected to the Grid Mover System Handler: Deployment, Route and
Request, each contains default algorithms for Job-Vehicle matching deployment, vehicle route planning,
and collision avoidance by partial route request. In each module, the users can edit the code and write their
coded algorithm inside the user algo() function. Figure 41 illustrates an example of the location of

user algo () in Deployment Interface. Similar to Route and Request interfaces.

v interface o else:
145 vehicle to_jobs_dict[target vehicle] = [getattr(row_job, "Job")]
146
PY _init_.py 147 return vehicle_to_jobs_dict
| 148
H PY deplohmentpy i : 149 def __get_minimum_arrival_time(self, job_maximum_waiting_time)
| 1 150 minimum_arrival_time = datetime.datetime.now() - datetime.timedelta(seconds=job_maximum_waiting_time)
151 return minimum_arrival time
PY request.py 152 - -
153 def __get_distance(self, start_square_unit_index, end_square_unit_index):
PY route.py 154 return abs(end_square_unit_index[@] - start_square_unit_index[@]) + abs(end_square_unit_index[1] - start_square_unit_index[1])
155 o o -
> job_generator 15 : def user_algo(self): :
157 H
158 1 User defines a new algorithm to get new assigned vehicles and jobs 1
> load 159 1 i
160) @return vehicle_to_jobs_dict 1
> log 1 1 (Contains all vehicles and their jobList information <DictionarycVehicle: ListcJob, Job, ...>, Vehicle: List<Job, Job, ...>, ...>») |
162 (For example: {vehiclel: [jobl, job2], vehicle2: [job3]} i
> output 163 |1 (running result: {<transportation.entities.gridmover. er object at 0x00090186851737Ce>: [<load.job.Job object at |
164 ©x000001B6B4FAFBED>, <load.job.Job object at 0x060001] 51, H
165 1 <transportation.entities.gridmover.GridMover object at ©x@000@1BEB5173E88>: [<load.job.Job object at 8x8@@0@1B6B5173460>]}) 1
PY statistics_outp... 166 1 :
167 |} vehicle to_jobs_dict = None 1
S un 168 : return vehicle_to_jobs_dict :

Figure 41 - An Example of the Location of user_algo() in the Deployment Interface

Other than that, the users can use the data that are available in the interface modules in their algorithms,
and the algorithms must return data back to the main Grid Mover System Handler in a format that is the
same as the default algorithm. If not, the Grid Mover System Handler may return errors. If the user
algorithm returns None, it will be skipped, and the default algorithm will be executed. Therefore, the users
must be familiar with the input and output data for each interface module, i.e. data available in the interface

and data to be returned. They are explained in the following section.

Deployment Routing

X

A
L — % \ 4
attempt_to_deploy(QZM_IGD

Grid Mover System Handler

artial_route_first request(artial_route_request
— 1

Request

J

Figure 42 - The Relationship Between the Grid Mover System Handler and the Interface Modules

52

3.6.1 Deployment

Deployment interface module is called in attempt to deploy () event, which attempts to match each Job
in available job df with a Vehicle based on written algorithms. The input parameters are two
DataFrames, available job df and vehicle df from the Grid Mover System Handler, and the return
value is a dictionary a11 vehicle to jobs dict, Which will overwrite the original venicie daf in the
Grid Mover System Handler based on certain rules (see attempt to deploy () eventinsection 3.4.2). The
description of available job df and vehicle df can be found in section 3.2, and the description of

all vehicle to jobs dictiSin Table 9.

available job df] all vehicle to jobs dict
Deployment J »

vehicle df

Figure 43 - Input Data and Return data for Deployment Interface Module

Table 9 - Input and Output Variables for Deployment Interface

Type | Variable Type Description
Input | available job df DataFrame See section 3.2.3
vehicle df DataFrame See section 3.2.1
Return | all_vehicle to_jobs_dict | Dictionary<Vehicle: A dictionary where the Vehicle objects are the keys and
List<Job>> the lists of Job objects deployed to the respective Vehicles

are the values.

€.0. {Vehiclel: [Jobl, Job2], Vehicle2: [Job3],...}
Each Job in the available job_df iS attempted to be
assigned to a Vehicle. All Vehicle objects in the Grid
Mover System appear as keys in the dictionary.

The default deployment algorithm is described in Figure 44, which allocates each Job in available job df

with the nearest Vehicles that are within the acceptable range of distance.

53

For all Jobs in available_job_df

Does the Job has been
generated for more than 300
seconds?

The Job is a long-wait job and
looks for Vehicle from the whole
Grid Mover System.

The Job looks for Vehicle from
within 5 unit distance.

Within the acceptable range of
distance, the Job looks for the
Vehicle whose last position after
finishing its ongoing Job is nearest
to the Job's picking position.

Record the Deployment result

Figure 44 - Deployment Default Algorithm

3.6.2 Route

Route interface module is called in route () event, which calculates routes for the Vehicles from their origin

to destination Square Units based on written algorithms. The input parameters are two objects

transportation network and vehicle (See section 3.1 for description), and two other variables

start_square unit and end square unit, Whose descriptions can be found in Table 10. The return

value is a list of Tuple integer pairs path, which will overwrite the values of ‘DynamicRoute’ in the original

vehicle df inthe Grid Mover System Handler based on certain rules (see route () event in section 3.4.3).

The description of patn variable can be found in Table 10.

vehicle

transportation network

start square unit

end square unit

path

]
Route >
J

Figure 45 - Input data and Return Data for Route Interface Module

Table 10 - Input and Output Variables for Route Interface

Type | Variable Type Description
Input | vehicle Vehicle See section 3.1
transportation network | Transportation See section 3.1
Network
start_square unit Tuple<int,int> The square unit index Of the origin Square Unit of the
Vehicle.
end_square_unit Tuple<int,int> The square unit_index Of the destination Square Unit of
the Vehicle.
Return | route List<Tuple<int, The list of square_unit_index Of the Square Units in the
int>> assigned route of the Vehicle, including
start_square unitaNndend square unit

The default route algorithm uses A* algorithm to generate routes for the Vehicles.

55

3.6.3 Request

Request interface module is called in partial route request() andpartial_route_first_request()
events, which reserves the partial route for a traveling Vehicle to avoid traffic collision. The input
parameters are one object venicie (See section 3.1 for description), and two DataFrames venicle df and
grid_df, whose descriptions can be found in Section 3.2. The return value is a list of Tuple integer pairs
partial route, Which will overwrite the values of "Reservation” or "ReservationPending" in the original
vehicle df in the Grid Mover System Handler depending on if the request being successful or not .The
“OccupiedVehicle® in grid af will also be updated if the partial route request is successful (see
partial route request () @Ndpartial route first request () eventinsection 3.4.4 and 3.4.7 for the

conditional update).The description of return variable partial route can be found in Table 11.

vehicle] partial route
Request

vehicle df J

grid df

Figure 46 - Input data and Return Data for Request Interface Module

Table 11 - Input and Output Variables for Request Interface

Type | Variable Type Description

Input | vehicle Vehicle See Section 3.1
vehicle df DataFrame See Section 3.2.1
grid_df DataFrame See Section 3.2.2

Return [partial route || ist<Tuple<int, The list of square unit_index Of the Square Units in the partial route
int>> to be reserved for the Vehicle, excluding the start position Of the
Vehicle

In the default request algorithm, the Vehicle requests 3 Square Units from its remaining route as its next
partial route. The remaining route refers to the remaining Square Units in its full route after the Vehicle

completes its current partial route.

56

3.7 Output

The output generated for each simulation run is for users to observe the performance of the Grid Mover

System, which is illustrated in Figure 47. The output variables include the Total Number of Jobs

Generated, statistics on finished Jobs and unfinished Jobs, and average cycle time. The output variables

and their definitions are listed in Table 12.

"Total Number of Job Generated": 69,
"Finished Joh": {
"Quantity": 62,
"Effective Duration With Load [s]": 585,
"Effective Ratio": 0.4251,
"Average Job Cycle Time [s]": 22.198
¥,
"Unfinished Job": {
"Quantity": 7,
"Penalty Time Per Job [s]": 900
¥,
"Delay Due To Waiting for Pick Up (Job) [s]": 400.51,
"Delay Due To Traffic Congestion (Loaded Vehicle) [s]": 1.76,
"Delay Due To Traffic Congestion (Empty Vehicle) [s]": 1.21,

"Duration Without Load [s]":

805.21,

"Adjusted Average Job Cycle Time [s]": 111.2504

Figure 47 - An Illustration on Model Output

Table 12 - Model Output Data

Output Variable Unit Type | Description
- int The total number of jobs generated during the
Total Number of Job Generated simulation time.
Finished Quantity - int The total number of jobs that are completed
job successfully, i.e., successfully unloaded at the
delivery position.
Effective seconds | float | The total sum of durations during which the Vehicles
Duration with travel carrying a load, excluding all the waiting times
Load for Square Units.
Effective Ratio |- float | The ratio between Effective Duration with
Load to Total cycle time for finished jobs (from
being generated to being unloaded successfully).
Average Job seconds | float | Total cycle time for finished jobs / Quantity for
Cycle Time finished job

57

Unfinished Quantity - int The total number of jobs that are not completed.
job
Penalty Time seconds | float | Penalty time for each unfinished job. It depends on
Per Job the total number of square units in the transportation
network.
Delay Due to Waiting for Pick | seconds | float | The sum of durations of jobs waiting for vehicles to
Up (Job) pick up.
Delay Due to Traffic seconds | float | The pending duration is caused by traffic congestion
Congestion (Loaded Vehicle) (i.e. waiting for square units) while the vehicle is
loaded.
Delay Due to Traffic seconds | float | The pending duration is caused by traffic congestion
Congestion (Empty Vehicle) while the vehicle is empty.
Duration Without Load seconds | float | The total sum of durations during which the vehicles
travel without carrying a load.
seconds | float | (Total cycle time for finished job + Quantity for

Adjusted Average Job Cycle
Time

unfinished job * Penalty Time Per Job for unfinished
job)/ Total Number of Job Generated

58

Chapter 4
Evaluation

4.1 File Submission Format

1) Zip package of interface folder
Attention:

a. Any modifaction related to interface should be put under interface folder,
including newly created class for interface algorithms purposes. Changes in other
folders will not be considered.

b. Beside interface folder, a text document of additional Python package installed
should be included in the zip file.

» WSC Case Competition v | D O FEE"WSC Case (

&R B M a
.idea 2022/7/29 15:26
config_pack 2022/7/6 13:36
handler 2022/7/1511:38
input 2022/7/1511:36

2022/7/1511:23
job_generator 2022/7/1511:23
load 2022/7/1511:23
log 2022/6/15 9:51
output 2022/7/1511:38
run 2022/7/29 15:22
standard 2022/7/1511:23
test animation 2022/7/1511:23
transportation 2022/6/6 1417
venv 2022/7/29 10:42
xml_parser 2022/7/29 0:03

| | README.md 2022/6/6 1417

2) Naming rule: Team Name_Round Number (e.g. SealTeam_Round1.zip)

4.2 File Submission Process

After joining a team, there will be a Submission section for competitors to submit files.

59

™ Introduction

Bl Instruction

A Download

& My Team

O Submission

4.3 Evaluation Criteria

1) Competitors’ interface will be adopted to simulate the given scenario as well as the hidden
scenario for the last round.
2) “Adjusted Average Job Cycle Time” from the output is the only criteria to evaluate system

performance.

El File Edit View Navigate Code Refactor Run JTools Git Window Help
WSC Case Competition ; output / K istics output.json run file ¥

Project v @ £ = & — README.md @ run file.py iy Statistics outputjson

" WSC Case Competition [wsc_eventt {

W Project

config_pack
handler
input
interface

@ Commit

job_generator
load

log

output

_output_creator.py

run
standard
test_animation
transportation
venv
xml_parser
README.md

> External Libraries

Scratches and Consoles

3) In the evaluation stage, multiple random seeds will be used to calculate the average performance

for each round. And only codes that run successfully will get scores.
60

4) Weightage and score of each round:

Weightage Table

Round Number

Round 1

Round 2

Round 3

Hidden Round

Weightage

5%

15%

30%

50%

The full score of each round is 100. The score for the top 10 teams will decrease by 5 from 100 according

to team's rank (i.e. the number 1 ranking team will be scored as 100, the second ranking team 95, etc.).

The rest of the teams after the top 10 teams will receive a score of 50.

61

